The Synthesis of Pyrido[4,3-b]carbazoles from Diphenylamine Derivatives: Alternative Routes to and Relay Syntheses of Ellipticines and Olivacines

Robin J. Hall, ${ }^{\boldsymbol{a}}$ Jeremy Marchant, ${ }^{\boldsymbol{a}}$ Ana M. F. Oliveira-Campos, ${ }^{\boldsymbol{b}}$ Maria-João R. P. Queiroz ${ }^{\boldsymbol{b}}$ and Patrick V. R. Shannon,*,a
a School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, Wales, UK
${ }^{\text {b }}$ Centro de Quimica Pura e Aplicada (I.N.I.C.), Universidade do Minho, Avenida João XXI, 4700 Braga, Portugal

Abstract

Two new synthetic routes to pyrido[4,3-b]carbazoles are described. In the first, Goldberg-type coupling of various aryl sulfonamides with aryl bromides in the presence of copper and potassium carbonate gives N, N-diaryl sulfonamides. UV irradiation of these, in ethanol, removes the toluene-psulfonyl protecting groups and cyclises the diphenylamine moiety to the corresponding carbazoles. These carbazoles are established intermediates in the synthesis of several ellipticines (5,11-dimethylpyrido [4,3-b] carbazoles).

In a complementary route, a series of substituted acetanilides are similarly coupled under Goldberg conditions with 2-bromo-5-cyanotoluene to give the corresponding cyanodiphenylamines and diphenylamides. Hydrolysis of the latter gives the diphenylamines which are then oxidatively cyclised to 3-cyano-1-methylcarbazoles. Reduction of the cyanocarbazoles leads to 3-formylcarbazoles which are known intermediates for the synthesis of 5-methylpyrido [4,3-b] carbazoles.

In earlier papers ${ }^{1-3}$ we have described the synthesis of novel alkoxy-substituted ellipticines 1 essentially by 'type $\mathrm{D}^{\prime 4}$ pathways which have started from appropriately substituted indoles. Many of these indoles have been expensive or commercially unobtainable, and have themselves required lengthy syntheses, which have detracted from the yields and accessibilities of the final products. We now describe alternative routes to both ellipticines 1 and olivacines 2 which begin with simple, readily available benzene derivatives and involve either the photochemical cyclisation and concomitant deprotection of N, N diaryl sulfonamides 3 to carbazoles 4 , or palladium(II) acetate cyclisation of cyanodiphenylamines 5 to cyanocarbazoles 6 as the key step.

The Photochemical Route to Substituted Carbazoles.-The photochemical cyclisation of diphenylamines to dihydrocarbazoles with rapid aromatisation to carbazoles, is well known, ${ }^{5}$ but although the synthesis of diphenylamines is relatively easy from suitably activated aryl halides and amines, a more general method, applicable to alkoxy-substituted diphenylamines is the 'Goldberg' coupling reaction, ${ }^{6}$ using an aryl bromide 7 and anilide 8 in the presence of copper. A systematic study of this reaction will be the subject of a future paper, but in this work we used (a) substituted sulfonamides 9 and (b) the acetanilides 8 to achieve coupling with aryl bromide in the presence of activated copper bronze or copper (I) species. In the cases of (a) we obtained mainly the N, N-diaryl sulfonamides 3 and for (b), both the diphenylamines 5 and their corresponding amides 10.
For the sulfonamides 3 reaction occurred over activated copper bronze, in the presence of potassium carbonate from 4 24 h without solvent, at temperatures from $150-200^{\circ} \mathrm{C}$. Yields, which were not optimised, are shown in Table 1. In general, it is possible to achieve coupling via the alternative arrangements of bromide and sulfonamide in the starting materials, although the yields and products may be different. For example, the sulfonamide 3 e was prepared either from the bromide 7 d and sulfonamide $9 \mathrm{a}(73 \%)$ or from bromide $\mathbf{7 b}$ and sulfonamide 9 d (28%). In the case of the sulfonamide 3d, obtained from bromide $\mathbf{7 b}$ and sulfonamide 9 c (45%), an attempted preparation from

Table 1 Synthesis of N, N-diaryl sulfonamides 3

Starting materials			
Bromide	Sulfonamide	Product	
$\mathbf{7}$	$\mathbf{9}$	$\mathbf{3}$	Yield $^{a}(\%)$
\mathbf{a}	\mathbf{a}	\mathbf{a}	16
\mathbf{b}	\mathbf{b}	\mathbf{b}	67
\mathbf{c}	\mathbf{a}	\mathbf{c}	63
\mathbf{b}	\mathbf{c}	\mathbf{d}	45
\mathbf{d}	\mathbf{a}	\mathbf{e}	73
\mathbf{b}	\mathbf{d}	\mathbf{e}	28
\mathbf{e}	\mathbf{a}	\mathbf{f}	52
\mathbf{b}	\mathbf{e}	\mathbf{g}	16
\mathbf{f}	\mathbf{e}	\mathbf{h}	67
\mathbf{b}	\mathbf{g}	\mathbf{i}	35

${ }^{a}$ After chromatography.
the bromide 7 g and sulfonamide 9 a gave only the corresponding amine 11 a .

Exceptionally, coupling of the sulfonamide of with the bromide 7 f gave, after 61 h , the triarylamine $12(25 \%)$.

Finally, in the case of the coupling of sulfonamide 9 e , the N methyl sulfonamide 13 was a significant by-product (11\%). A similar transfer of methyl group from oxygen to nitrogen has been observed in the coupling of the sulfonamide 9 a with the bromide 7c.

Attempted hydrolysis of the model sulfonamide $\mathbf{3 h}$ gave only the aldehyde $3 \mathbf{j}(84 \%)$ with hydrobromic acid in acetic acid. The use of sodium bis(2-methoxyethoxy)aluminium hydride ${ }^{8}$ gave only a low yield of the relatively impure amine 14. The use of this reagent for the sulfonamides $\mathbf{3 c}$ and $\mathbf{3 f}$ gave varying yields of the amines 11c and 11 b (45 and 13%, respectively), but the products were impure.

In earlier work ${ }^{6 c .9}$ however, direct photochemical conversion of the acetamides $\mathbf{1 5}$ and 16 into the carbazoles $4 a$ and b was achieved, but these were minor components and were accompanied by larger amount of photo-Fries products. In the case of the sulfonamides 3 it proved possible to effect direct cyclisation to the carbazoles 4 with, generally, no or very minor quantities

a $R^{2}=\mathrm{OMe} ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H} \quad f \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{OMe}$
b $R^{1}=O M e ; R^{2}=R^{3}=R^{4}=H \quad g R^{1}=R^{2}=R^{3}=O M e ; R^{4}=H$
c $R^{1}=R^{2}=R^{3}=R^{4}=H$
h $R^{3}=\mathrm{OMe} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}$
d $R^{1}=R^{2}=R^{3}=H ; R^{4}=O M e$
i $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{H} ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{OCH}_{2} \mathrm{O}$
e $\mathbf{R}^{1}=R^{3}=\mathbf{O M e} ; R^{2}=R^{4}=H$

$R^{n}=H$ unless stated otherwise
a $\mathrm{R}^{5}=\mathrm{R}^{8}=\mathrm{Me}$
b $R^{1}=R^{4}=\mathrm{Me} ; R^{5}=O M e$
c $\mathrm{R}^{3}=\mathrm{OMe} ; \mathrm{R}^{5}=\mathrm{R}^{8}=\mathrm{Me}$
d $R^{2}=O M e ; R^{5}=R^{8}=M e$
$e R^{1}=R^{3}=O M e ; R^{5}=R^{8}=M e$
$f R^{2}=R^{4}=O M e ; R^{5}=R^{8}=M e$

a $R^{1}=R^{3}=O M e ; R^{2}=R^{4}=H$
b $R^{1}=R^{2}=R^{3}=R^{4}=H$
c $R^{2}=O M e ; R^{1}=R^{3}=R^{4}=H$
$d R^{1}=R^{2}=R^{3}=O M e ; R^{4}=H$
$e R^{1}=R^{4}=H ; R^{2} R^{3}=\mathrm{OCH}_{2} \mathrm{O}$

$$
\begin{aligned}
& g R^{1}=R^{4}=M e ; R^{6}=R^{7}=R^{8}=O M e \\
& h R^{2}=R^{6}=R^{7}=R^{8}=O M e
\end{aligned}
$$

$$
i R^{1}=R^{4}=\mathrm{Me} ; R^{6}, R^{7}=O C H_{2} \mathrm{O}
$$

$$
j \mathrm{R}^{2}=\mathrm{CHO} ; \mathrm{R}^{6}=\mathrm{R}^{7}=\mathrm{R}^{8}=\mathrm{OMe}
$$

of by-products. Typically the starting material was irradiated for 7 h at a concentration of $c a .3 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ in ethanol under nitrogen using a medium pressure mercury vapour lamp (see Table 2).
The carbazoles obtained as described above were, in few cases, accompanied by by-products which will be discussed below, but in general they were easily separated. For the carbazoles $\mathbf{4 a},{ }^{10} \mathbf{c},{ }^{9} \mathbf{d},{ }^{11} \mathbf{f},{ }^{3} \mathbf{g}^{1}$ and i^{12} subsequent conversions into the corresponding ellipticines 1 have already been described, ${ }^{1,3,9-12}$ using well-established methods ${ }^{13}$ for annulation of ring D , so that the sulfonamide-bromide coupling and photochemical cyclisation-deprotection sequence constitutes a novel, simplifed relay synthesis of all these ellipticines.

In the case only of the sulfonamide 3b was the main product $4 d$ accompanied by 3% of the photo-Fries product 17 . The compound showed $\mathrm{M}^{+} 381.1399\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\right)$ and in its NMR spectrum, NOE difference spectra showed that saturation of the OMe group at $\delta 3.96$ gave a 15% enhancement of the

7
a $R^{1}=R^{2}=R^{3}=R^{4}=H$
b $R^{2}=R^{3}=H ; R^{1}=R^{4}=M e$
c $R^{1}=R^{2}=R^{4}=H ; R^{3}=O M e$
$d R^{2}=R^{4}=H ; R^{1}=R^{3}=O M e$
$e R^{1}=R^{3}=H ; R^{2}=R^{4}=O M e$
$f R^{1}=R^{3}=R^{4}=H ; R^{2}=$
$g R^{1}=R^{3}=R^{4}=H ; R^{2}=O M e$

a $R^{2}=R^{3}=H ; R^{1}=R^{4}=M e$
b $R^{2}=R^{3}=R^{4}=H ; R^{1}=O M e$
c $R^{1}=R^{2}=R^{4}=H ; R^{3}=O M e$
$d R^{1}=R^{3}=H ; R^{2}=R^{4}=O M e$
e $R^{1}=H ; R^{2}=R^{3}=R^{4}=O M e$
f $R^{2}=R^{4}=H ; R^{1}=R^{3}=O M e$
$g R^{1}=R^{4}=H ; R^{2}=R^{3}=\mathrm{OCH}_{2} \mathrm{O}$

8
a $R^{1}=R^{3}=O M e ; R^{2}=R^{4}=H$ b $R^{1}=R^{2}=R^{3}=R^{4}=H$ c $R^{1}=R^{3}=R^{4}=H ; R^{2}=O M e$ $d R^{1}=R^{2}=R^{3}=\mathrm{OMe} ; \mathrm{R}^{4}=\mathrm{H}$ e $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{H} ; \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{OCH}_{2} \mathrm{O}$

a $R^{1}=R^{3}=O M e ; R^{2}=R^{4}=H$
b $R^{1}=R^{2}=R^{3}=R^{4}=H$ $c R^{1}=R^{3}=R^{4}=H ; R^{2}=O M e$ d $R^{1}=R^{2}=R^{3}=O M e ; R^{4}=H$ $e R^{1}=R^{4}=H ; R^{2}, R^{3}=O \mathrm{CH}_{2} \mathrm{O}$

$15 \mathrm{R}^{1}=\mathrm{OMe} ; \mathrm{R}^{2}=\mathrm{H}$
$16 \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OMe}$
singlet signal at $\delta 7.33$, showing the position of the toluene- p sulfonyl group.

It is of interest that irradiation of the sulfonamide $\mathbf{3 h}$ gave only the photo-Fries product $18(27 \%),\left(\mathrm{M}^{+}, 528.2056 . \mathrm{C}_{28}{ }^{-}\right.$

Table 2 Yields, after chromatography, of carbazoles 4 from diaryl sulfonamides 3

Sulfonamide	Carbazole	
$\mathbf{3}$	$\mathbf{4}$	Yield $^{\boldsymbol{a}} \mathbf{(\%)}$
\mathbf{a}	\mathbf{c}	54
\mathbf{d}	\mathbf{a}	73
\mathbf{b}	\mathbf{d}	34
\mathbf{c}	\mathbf{b}	25
\mathbf{e}	\mathbf{e}	43
\mathbf{f}	\mathbf{f}	23
\mathbf{g}	\mathbf{g}	15
\mathbf{i}	\mathbf{i}	24

${ }^{a}$ After chromatography.

$\mathrm{H}_{34} \mathrm{NO}_{7} \mathrm{~S}$). The position of the rearranged toluene-p-sulfonyl group was evident from its ${ }^{1} \mathrm{H}$ NMR spectrum which showed an AB quartet remaining for the right-hand ring of 18 and a $1 \mathrm{H}-$ intensity singlet at $\delta 6.53$ due to the remaining aromatic proton of the left-hand ring.

The Palladium(II) Acetate Route to Substituted Carbazoles.(a) Synthesis of the cyanodiphenylamines. Another strategy for the preparation of key carbazoles for pyrido[4,3-b]carbazole synthesis lay potentially in the palladium(II) acetate oxidation of diphenylamines, on which a preliminary report appeared ${ }^{14}$ in 1975. This pathway would require the free diphenylamine and the ease of hydrolysis of amides, compared with sulfonamides, suggested that we should couple acetanilides with bromobenzene derivatives.
In our earlier modification ${ }^{13 b}$ of the Pomeranz-Fritsch cyclisation, we annulated ring D of the pyrido $[4,3-b]$ carbazole system by first introducing the necessary formyl groups at the carbazole 3-position. This formylation step may often lack regiospecificity as has been found in some instances in which ring A is substituted by activating groups. For example in the cases of the carbazoles $4 \mathrm{~h},{ }^{10}$ and $\mathbf{4 f},{ }^{3}$ Vilsmeier formylation took place exclusively in ring A , and in carbazole 4 g a mixture of ring A and C formylation occurred. ${ }^{1}$ In the light of some preliminary work ${ }^{6 c}$ we chose the cyano group as an alternative to the formyl group expecting that this would be stable to the conditions of Goldberg coupling and to the palladium(II) acetate oxidation. It could be converted into the formyl group (or possibly the aminomethyl group) by subsequent reduction.

In our first experiments we coupled equimolar amounts of the anilide 8a and the bromomethyl nitrile 19^{15} at $160-170^{\circ} \mathrm{C}$ in the presence of activated copper bronze and anhydrous potassium carbonate. Under these conditions, the desired cyanodiphenylamine 5 a was obtained, but in only very low yield (6%). Its structure followed unambiguously from its spectra and microanalysis. A very low yield of a colourless crystalline solid, m.p. $180^{\circ} \mathrm{C}$ was also isolated. The IR spectrum showed both the cyanide ($2230 \mathrm{~cm}^{-1}$) and an amide group ($1650 \mathrm{~cm}^{-1}$). Mass spectrometry confirmed the molecular formula as $\mathrm{C}_{16} \mathrm{H}_{13^{-}}$
$\mathrm{BrN}_{2} \mathrm{O}$. The six aromatic proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum were consistent with the structure 20. The amide appeared to have been formed by substitution of the activated bromine followed by hydration, and indeed, when the nitrile 19 was heated with activated copper bronze and potassium carbonate for 10 h the crude anilide 20 was formed in 20% yield. Recrystallisation gave a sample of the same amide, m.p. $180^{\circ} \mathrm{C}$; $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 1650$. Concentration of the mother liquors, however gave a solid, m.p. $136-137^{\circ} \mathrm{C}$, $v_{\max } / \mathrm{cm}^{-1} 1680$. Apart from these differences all other spectral data on these samples were identical. It would appear that the two solids were different rotamers about the $\mathrm{C}-\mathrm{N}$ bond. Treatment of amide 20 with ethanolic potassium hydroxide gave the amine $21,{ }^{16}$ and the acid 22. ${ }^{17}$ If a 3:1 molar excess of the anilide 8a to nitrile 19 was used, none of the nitrile 20 was obtained, the major product (26%) being the diphenylamide 10a but if copper(1) oxide at 190 $200^{\circ} \mathrm{C}$ was used in place of copper bronze for 7 h , the yield of the amide 10 a was increased to 72%. It is of interest that copper(I) bromide, under the same conditions, gave only a 28% yield. The amide 10a, in its ${ }^{1} \mathrm{H}$ NMR spectrum, gave only broad signals, even at $100^{\circ} \mathrm{C}$, presumably due to hindered rotation. This was a general feature of the spectra of the amides 10. Hydrolysis with ethanolic potassium hydroxide gave the pure amine 5 a in 95% yield.
In contrast to the nitrile 19, when the aldehyde $23^{15 b}$ was heated for 6 h at $180-200^{\circ} \mathrm{C}$ with copper(I) oxide and the anilide 8a only the bromocinnamide $24(53 \%)$ was isolated after chromatography. The mass spectrum ($\mathrm{M}^{+}, 375.377$) and elemental analysis supported structure 24 and the bridging group was evident from the IR spectrum (3300,1680 and 1630 cm^{-1}) and the ${ }^{1} \mathrm{H}$ NMR spectrum which showed the vinyl protons as two doublets, $J 14 \mathrm{~Hz}$, at $\delta 7.66$ and 6.53 . In an attempt to avoid aldol condensation between the anilide 8a and the aldehyde 23 the latter was converted into its acetal 25 in 98% yield. The acetal 25 and the anilide 8a were coupled at 185$195^{\circ} \mathrm{C}$ with activated copper bronze to give the diphenylamide 26 (36\%).

Alkaline hydrolysis of the diphenylamide 26 gave the amine $27(65 \%)$ which on acid hydrolysis in aqueous dioxane afforded a 49% yield of the amine 28 . A more direct route to this amine (79%) proved to be reduction of the nitrile 5 a with diisobutylaluminium hydride in toluene.

Having successfully obtained the 3,5-dimethoxyphenylaniline 5a, the anilides 8b-8e were coupled with the nitrile 19. Hogan, Jenkins and Sainsbury recently reported ${ }^{18}$ a synthesis of the alkaloid olivacine $2\left(R^{1}-R^{4}=H\right)$ in which the 3-cyano-1methylcarbazole 6a, a key intermediate synthesised from gramine and the 2-cyano-4-oxopentanonitrile 29, was reduced to the corresponding aldehyde, which was in turn annulated by several steps to olivacine. One advantage of this approach was the regiospecific introduction of the 1 -methyl and 3-cyano groups in the carbazole. The route however, would require gramines substituted in the indole nucleus for application to ring A-substituted derivatives of olivacine $2\left(R^{1}-R^{4}=H\right)$. In our route, the bromobenzonitrile 19 and acetanilide, gave the amine $5 \mathrm{~b}(9.5 \%)$ and the amide $\mathbf{1 0 b}(15 \%)$. With copper((I) oxide instead of copper bronze, a slightly improved yield of the amide (20%) was achieved, but with none of the corresponding amine.
Virtually quantitative hydrolysis of the amide $\mathbf{1 0 b}$ to the amine $\mathbf{5 b}$ was achieved with potassium hydroxide in refluxing ethanol in 1 h . Similarly, 4-methoxyacetanilide, when coupled with the nitrile 19, gave, apart from starting materials, only the amine $5 \mathrm{c}(9 \%)$ and amide $10 \mathrm{c}(36 \%$). The use of copper(I) oxide gave a very similar yield of the amide, but less amine, whereas copper(I) chloride gave only trace amounts of each product. Similar couplings of the nitrile 19 with 3,4,5-trimethoxyacetanilide 8d in the presence of copper(I) oxide gave the corresponding amine $\mathbf{5 d}$ and amide $\mathbf{1 0 d}$ in yields of 5 and 21%

20

$22 \mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
$23 \mathrm{R}=\mathrm{CHO}$
$25 \mathrm{R}=\mathrm{O}_{\mathrm{O}}^{\mathrm{O}} \mathrm{C}$

respectively. As before, quantitative hydrolysis of the amide to the amine was possible.

Finally, coupling of the nitrile 19 with 3,4-methylenedioxyacetanilide 8 e was examined using both copper bronze and copper(I) oxide. With the former, besides the expected amine 5 e and amide 10 e and unused starting materials, 4-cyano-2methylaniline ${ }^{16} 21$ was isolated. This may have arisen by in situ formation and hydrolysis of the amide 20 (see above).

The use of a $3: 1$ molar excess of starting amide $8 \mathbf{e}$ to the nitrile 19 together with rigorous drying of materials and glassware failed to irradicate the formation of the amine 21. Neither the nitrile 20 nor the acid 22 were detected in the mixture of products. The use of copper(I) oxide afforded only a very small yield of amine 5 e and amide 10 e .

Although the combined yields of amines + amides in these Goldberg couplings were variable, the easy availability of starting materials and the ready and virtually quantitative hydrolysis of the amides to the amines made the reactions a simple and convenient route to the diphenylamine precursors for the formation of 3-cyanocarbazoles. No attempts were made, however, to optimise the yields of coupling products and it is clear that the change from copper to copper(I) oxide [or copper(I) chloride] has potentially a dramatic if unpredictable effect on the course and yield of the reactions.

Cyclisation of Diphenylamines to 3-Substituted Carbazoles with Palladium(II) Acetate.-With the accessibility of the substituted 1-methyl- N-phenylanilines 5a-e, we next examined their cyclisations to carbazoles. The diphenylamine 5b on heating at reflux in trifluoroacetic acid under nitrogen for $2 h$ with one mole of palladium acetate gave 3-cyano-1-methylcarbazole ${ }^{18} 6 \mathrm{a}(30 \%)$ as the only isolable product.

As this carbazole had been synthesised previously ${ }^{18}$ we did not attempt to optimise the yield. In the case of the diphenylamine 5 c , however, the best conditions (50% yield) appeared to be 2 equiv. of palladium(II) acetate in refluxing trifluoroacetic acid for 2.25 h under nitrogen. Reduction of the resulting nitrile 6b with diisobutylaluminium hydride in diglyme gave the corresponding aldehyde $30 \mathrm{a} .{ }^{19}$ Viel et al. ${ }^{19}$ synthesised this formylcarbazole 30a from p-methoxyphenylhydrazone and 2methylcyclohexanone, and then ${ }^{19.20}$ annulated the pyridine

29

a $R^{2}=O M e ; R^{1}=R^{3}=H$ $b R^{1}=R^{2}=R^{3}=O M e$

$a R^{2}=O M e ; R^{1}=R^{3}=H$
$b R^{1}=R^{2}=R^{3}=O M e$

ring to the pyridocarbazoles 31a and 32a so that the present work constitutes a relay synthesis of these systems. Reissert alkylation of the isoquinoline moiety of the pyrido[4,3-b]carbazole 31a would also be expected to give 9 -methoxyolivacine $2\left(R^{2}=O M e, R^{1}=R^{3}=R^{4}=H\right)$ by analogy with earlier work. ${ }^{21}$

The diphenylamine 5 d was oxidised by palladium(II) acetate in refluxing acetic acid to give the cyanocarbazole $6 \mathbf{c}$ in 57% yield. The UV spectrum was characteristic of a cyanocarbazole and in the ${ }^{1} \mathrm{H}$ NMR spectrum, the 4-H proton, as expected, gave a singlet at δ 8.34. Reduction of the nitrile $\mathbf{6 c}$ with diisobutylaluminium hydride in diglyme gave the 3-formylcarbazole $30 \mathrm{~b}(69 \%)$. The facile synthesis of this carbazole enables an alternative synthesis of the pyridocarbazole systems 31b and 32b. Similarly, oxidation of the diphenylamine 5 e, gave a mixture of the isomeric carbazoles 33 and 34 in the ratio of 6:1 respectively, 45% after chromatography. That the major isomer was 33 was evident from the two intense singlets at δ 7.66 and 7.05 from the 5 - and 8 -protons, respectively, and the minor AB system of doublets at $\delta 7.13$ and 7.04 .

Finally, the diphenylamine 5a on treatment with 2 equiv. of palladium(II) acetate in acetic acid at reflux for 1 h gave the carbazole $\mathbf{6 d}$ in 55% yield. The synthesis of pyridocarbazoles from this dimethoxycarbazole presented difficulties and interesting aspects which will be discussed in a future paper.

The approach to the pyridocarbazole system has been achieved in a number of cases previously which were based on the appropriate indoles as starting materials and their conversion into the 1,4-dimethylcarbazoles with hexane-2,5dione. The present results offer viable and simpler alternative routes to the appropriate intermediate carbazoles or formylcarbazoles through photochemical cyclisation and deprotection of diphenylsulfonamides, or palladium acetate oxidation of the free cyanodiphenylamines. These methods are particularly valuable for the pyridocarbazoles substituted only in the 5 and not the 11-position. For pyridocarbazoles in which ring A contains electron-donating substituents, in situ introduction of the nitrile group specifically via the unit 19 into the carbazole 3-position avoids the problem of the lack of regiospecificity during formylation of the carbazole unsubstituted at position 3.

Experimental

M.p.s were uncorrected. UV spectra were measured on a Unicam SP-800 spectrophotometer or a Jasco model 7850 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra, unless stated otherwise, were recorded in deuterochloroform on a Bruker 360 MHz spectrometer, J values are given in Hz . Column chromatography was performed on Merck silica gel 60 (Art 9385) or (Art 7729). Light petroleum refers to solvent boiling in the range $40-60^{\circ} \mathrm{C}$.

Goldberg Coupling Reactions.-(a) Sulfonamides. Activation of the copper. Copper bronze (10 g) was treated with a 2% solution of iodine in acetone ($100 \mathrm{~cm}^{3}$) for $5-10 \mathrm{~min}$. It was filtered and washed by stirring with a $1: 1$ solution of concentrated hydrochloric acid in acetone ($50 \mathrm{~cm}^{3}$). The residual copper bronze was filtered at the pump, washed with acetone and dried in a vacuum desiccator.
Potassium carbonate was dried overnight at $120^{\circ} \mathrm{C}$.
Method (a). 2,5-Dimethyl-N-phenyl-N-(toluene-p-sulfonyl)aniline 3a. The aryl bromide $7 \mathrm{a}(7 \mathrm{~g}, 0.046 \mathrm{~mol})$, and sulfonamide $9 \mathrm{a}(8 \mathrm{~g}, 0.029 \mathrm{~mol})$, copper bronze (4.5 g) and potassium carbonate (1.5 g) were heated at reflux for 13 h . To the cooled mixture water was added and the excess of bromide 7a was removed by steam distillation. The cooled aqueous residue was extracted with ether ($3 \times 100 \mathrm{~cm}^{3}+4 \times 50 \mathrm{~cm}^{3}$) and the combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent gave a brown oil (2.55 g). Part of this oil was submitted to flash chromatography (ethyl acetate-light petroleum, 5:95) and gave a light pink solid (0.66 g , scaled up yield 16.5%). Crystallisation from ethyl acetate-light petroleum afforded the pure sulfonamide 3a as colourless crystals, m.p. $119-121^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.22\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$ and $6.80-7.90(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 213\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 23130$); $m / z(\%)$ (EI) 351 (M ${ }^{+}, 24$), 196 (100), 181 (60) and 180 (45) (Found: C, $71.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3.65 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 71.8 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.99 \%$).

Method (b). N -(2^{\prime}-Methoxyphenyl)-2,5-dimethyl- N -(toluene-p-sulfonyl) aniline 3b. The sulfonamide $9 \mathrm{~b}(1.5 \mathrm{~g}, 0.0054 \mathrm{~mol})$, the aryl bromide $7 \mathrm{~b}(1.2 \mathrm{~g}, 0.0065 \mathrm{~mol})$, copper bronze $(0.75 \mathrm{~g})$ and potassium carbonate (0.3 g) were heated at reflux $\left(200^{\circ} \mathrm{C}\right)$ for 10.5 h . The cooled mixture was treated with chloroform and the copper and potassium carbonate were removed by filtration before the residue was submitted to flash chromatography (ether-light petroleum, $25: 75$) and gave a solid ($1.38 \mathrm{~g}, 67 \%$), m.p. $116-118^{\circ} \mathrm{C}$. Crystallisation from ether-light petroleum gave the sulfonamide 3b as colourless crystals, m.p. $120.5-122{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.26$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 2.34 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.45 ($3 \mathrm{H}, \mathrm{s}$, tosyl-Me), 3.61 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.84\left(1 \mathrm{H}, \mathrm{d}, J 8,3^{\prime}-\mathrm{H}\right), 6.90\left(1 \mathrm{H}, \mathrm{dt}, J 8,1.5,5^{\prime}-\mathrm{H}\right)$, $7.00(1 \mathrm{H}, \mathrm{d}, J 8,4-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{d}, J 8,3-\mathrm{H}), 7.24\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{and}\right.$ $6-\mathrm{H}$ and $3-$ and $5-\mathrm{H}$ of tosyl), $7.44\left(1 \mathrm{H}, \mathrm{dd}, J 8,1.5,6^{\prime}-\mathrm{H}\right)$ and 7.58 ($2 \mathrm{H}, \mathrm{d}, J 8,2$ - and 6-H of tosyl); $m / z(\%)$ (EI) $381\left(\mathrm{M}^{+}, 10\right.$), 226 (100), 194 (90), 91 (60) and $65(30)$; (CI) $382\left(\mathrm{M}^{+}+1,60\right)$ and 227 (100).

N -($\mathbf{3}^{\prime}$-Methoxyphenyl) $\mathbf{- 2 , 5 - d i m e t h y l - \mathrm { N } - (t o l u e n e - p - s u l f o n y l) - ~}$ aniline 3 c . The aryl bromide $7 \mathrm{c}(3.8 \mathrm{~g}, 0.02 \mathrm{~mol})$, the sulfonamide $9 \mathrm{a}(2.75 \mathrm{~g}, 0.01 \mathrm{~mol})$, copper bronze (1.5 g) and potassium carbonate (0.5 g) were heated at reflux under nitrogen for 4 h . Work-up by method (a) gave a dark brown oil (3.86 g) which on flash chromatography (ethyl acetate-light petroleum, 15:75) gave the main product as a light yellow solid ($2.4 \mathrm{~g}, 63 \%$), m.p. $75-77^{\circ} \mathrm{C}$. This was crystallised from ethanol to give the sulfonamide 3 c as colourless crystals, m.p. 79-80 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{6 c} 77-$ $\left.78.5^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.20(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar}-\mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ar}-\mathrm{Me}$), 3.70 ($\mathbf{3 ~ H , ~ s , ~ O M e) ~ a n d ~ 6 . 5 0 - 7 . 8 0 ~ (~} 11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 221\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 28\right.$ 180), 270 (6250) and 278 (5977).

N -(4'-Methoxyphenyl)-2,5-dimethyl- N -(toluene-p-sulfonyl)aniline 3d. The sulfonamide $9 \mathrm{c}(1 \mathrm{~g}, 0.0038 \mathrm{~mol})$, the aryl bromide $7 \mathrm{~b}(0.84 \mathrm{~g}, 0.0046 \mathrm{~mol})$, copper bronze (0.5 g) and
potassium carbonate $(0.2 \mathrm{~g})$ were heated at reflux $\left(200^{\circ} \mathrm{C}\right)$ for 4 h. Work-up by method (b) gave an oil (1.7 g) which on chromatography (ether-light petroleum, 20:80) gave a colourless solid (0.4 g), m.p. $151-152^{\circ} \mathrm{C}$ and a more impure fraction (total yield 45%) which was crystallised from ether to give the sulfonamide 3 d as colourless crystals, m.p. $152-153^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.25$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 2.31 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.46 ($3 \mathrm{H}, \mathrm{s}$, tosyl-Me), 3.78 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.81\left(2 \mathrm{H}, \mathrm{d}, J 9,3^{\prime}\right.$ - and $\left.5^{\prime}-\mathrm{H}\right), 6.88(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.02$ $(1 \mathrm{H}, \mathrm{d}, J 7.5,4-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d}, J 7.5,3-\mathrm{H}), 7.25\left(2 \mathrm{H}, \mathrm{d}, J 9,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.27(2 \mathrm{H}, \mathrm{d}, J 8,3-$ and $5-\mathrm{H}$ of tosyl) and $7.57(2 \mathrm{H}, \mathrm{d}, J$ 8, 2- and 6-H of tosyl); $m / z(\%)$ (EI) 381 (M ${ }^{+}, 10$), 226 (100), 194 (60), 91 (50) and 65 (23); (CI) 382 (30) and 227 (100) (Found: C, 69.4; H, 6.1; $\mathrm{N}, 3.6 . \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 69.3 ; \mathrm{H}, 6.08$; N , 3.67%).
N -(4'-Methoxyphenyl)-2,5-dimethylaniline 11 (attempted preparation of the sulfonamide $\mathbf{3 d}$). The aryl bromide $7 \mathrm{~g}(3.8 \mathrm{~g}, 0.02$ mol), the sulfonamide $9 \mathrm{a}(2.7 \mathrm{~g}, 0.0098 \mathrm{~mol})$, copper bronze (1.5 g) and potassium carbonate (0.5 g) were heated at reflux for 1.5 h . Work-up by method (a) gave a brown oil (1.5 g) which was submitted to flash chromatography (ethyl acetate-light petroleum, 1:99) and gave the still impure product (0.4 g). Crystallisation of 0.2 g from light petroleum gave the amine 11 as a cream solid (110 mg , scaled up yield 10%), m.p. $34-35^{\circ} \mathrm{C}$ (lit., ${ }^{9}$ oil); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.20(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar}-\mathrm{Me}), 3.74(3 \mathrm{H}, \mathrm{s}$, OMe), 5.10 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$) and 6.40-7.30 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 210\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 21950\right)$ and 282 (15050); $v_{\text {max }}$ (Nujol mull) $/ \mathrm{cm}^{-1} 3400$ (sh, NH); m / z (\%) (EI) $228\left(\mathrm{M}^{+}+1,14\right), 227\left(\mathrm{M}^{+}, 94\right), 213(16), 212(100)$ and 72 (12) (Found: $\mathbf{M}^{+}, 227.1302 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$ requires $M, 227.1310$).
N -(3',5'-Dimethoxyphenyl)-2,5-dimethyl- N -toluene-p-sul-
fonylaniline 3e. First preparation. The sulfonamide $9 \mathrm{~d}(1 \mathrm{~g}$, $0.0033 \mathrm{~mol})$, the aryl bromide $7 \mathrm{~b}(0.723 \mathrm{~g}, 0.0039 \mathrm{~mol})$, copper bronze $(0.59 \mathrm{~g})$ and potassium carbonate $(0.2 \mathrm{~g})$ were heated at $180^{\circ} \mathrm{C}$ for 6 h and at $200^{\circ} \mathrm{C}$ for 12 h . Work-up by method (b) gave a brown oil (1.6 g) which on chromatography (ether-light petroleum, $40: 60$) gave a pink oil ($0.290 \mathrm{~g}, 21 \%$) which crystallised from ether-light petroleum to give pink crystals, m.p. $110-112^{\circ} \mathrm{C}$. Recrystallisation from ether gave the sulfonamide 3 e as colourless crystals, m.p. $118.5-119{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.24$ (6 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$ and Tos-Me), 2.43 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 3.72 ($6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}), 6.27\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 6.46\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{and} 6^{\prime}-\mathrm{H}\right), 6.87$ $(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}, J 7,4-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{H}), 7.29$ ($2 \mathrm{H}, \mathrm{d}, J 8,3$ - and $5-\mathrm{H}$ of tosyl) and 7.66 ($2 \mathrm{H}, \mathrm{d}, J 8,2$ - and $6-\mathrm{H}$ of tosyl); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \quad 204\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 45132\right)$ 267infl (4375) and 276infl (3593) (Found: C, 66.9; H, 6.25; N, 3.5. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.1 ; \mathrm{H}, 6.12 ; \mathrm{N}, 3.40 \%$).
Taking into account another fraction (0.1 g), shown to be the product 3 e in a reasonably pure form, the yield rose to 28%.
Second preparation. The aryl bromide $7 \mathrm{~d}(1.94 \mathrm{~g}, 0.0089 \mathrm{~mol})$, the sulfonamide $9 \mathrm{a}(1.6 \mathrm{~g}, 0.006 \mathrm{~mol})$, copper bronze $(0.8 \mathrm{~g})$ and potassium carbonate $(0.25 \mathrm{~g})$ were heated at $130-200^{\circ} \mathrm{C}$ for 7 h . Work-up as for the first preparation gave a brown oil (3.7 g). This oil was submitted to vacuum filtration through a column using solvent mixtures of increasing polarity, from dichloro-methane-light petroleum ($3: 7$ to pure dichloromethane) to give an oil ($1.83 \mathrm{~g}, 73 \%$). Crystallisation from dichloromethane-light petroleum gave 3 e as colourless crystals, m.p. $120-121^{\circ} \mathrm{C}$. The TLC and NMR spectrum were identical to those from the first preparation.
N -($2^{\prime}, 4^{\prime}$-Dimethoxyphenyl)-2,5-dimethyl- N -toluene-p-sulfonylaniline 3f. The aryl bromide $7 \mathrm{e}(3.6 \mathrm{~g}, 0.0165 \mathrm{~mol})$, the sulfonamide $9 \mathrm{a}(3 \mathrm{~g}, 0.011 \mathrm{~mol}$), copper bronze $(1.5 \mathrm{~g})$ and potassium carbonate (0.5 g) were heated at $175^{\circ} \mathrm{C}$ under an atmosphere of nitrogen for 24 h . Work-up by method (b) gave a brown oil (5.98 g). Chromatography (ethyl acetate-light petroleum, 2:8) gave two oily fractions (2.12 and 1.16 g) each of which solidified, m.p. $85-87$ and $70-74^{\circ} \mathrm{C}$, respectively (73%). Crystallisation of the two combined fractions, from ethyl
acetate-light petroleum afforded the sulfonamide 3 f as colourless crystals ($2.34 \mathrm{~g}, 52 \%$), m.p. $89-91^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 6.36 ($1 \mathrm{H}, \mathrm{d}, J 2.5,3^{\prime}-\mathrm{H}$), 6.42 $\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.5,5^{\prime}-\mathrm{H}\right), 6.98(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8,4-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{d}, J$ 8, 3-H), $7.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 7.24(2 \mathrm{H}, \mathrm{d}, J 8,2 \times$ Ar-H of tosyl), $7.36\left(1 \mathrm{H}, \mathrm{d}, J 8.5,6^{\prime}-\mathrm{H}\right)$ and $7.56(2 \mathrm{H}, \mathrm{d}, J 8,2 \times$ Ar-H of tosyl); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 215\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 25370\right)$ and 280 (5930); m/z (\%) (EI) $412\left(\mathrm{M}^{+}+1,3\right), 411\left(\mathrm{M}^{+}, 11\right), 257$ (20), 256 (100), 225 (39) and 224 (47) (Found: $\mathbf{M}^{+}, 411.1507$. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 411.1504$) (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 6.0$; $\mathrm{N}, 3.2 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.1 ; \mathrm{H}, 6.12 ; \mathrm{N}, 3.40 \%$).

N -(3', $4^{\prime}, 5^{\prime}$-Trimethoxyphenyl)-2,5-dimethyl- N -toluene-p-sulfonylaniline 3 g . The sulfonamide $9 \mathrm{e}(1 \mathrm{~g}, 0.003 \mathrm{~mol})$, the aryl bromide $7 \mathrm{~b}(0.67 \mathrm{~g}, 0.0036 \mathrm{~mol})$, copper bronze $(0.45 \mathrm{~g})$ and potassium carbonate $(0.15 \mathrm{~g})$ were heated to reflux at $200^{\circ} \mathrm{C}$ for 10 h . Work-up by method (b) gave a dark brown oil (1.6 g) which on chromatography (ether-light petroleum, $35: 65$) gave an orange oil $(0.4 \mathrm{~g})$ which was a mixture of two spots (TLC). This was re-chromatographed to give 100 mg of the sulfonamide 3g, the 3,4,5-trimethoxy-N-methyl- N -(toluene-p-sulfonyl)aniline $13(80 \mathrm{mg})$ and 200 mg of a mixture of the two products. Crystallisation of $\mathbf{3 g}$ from ethanol-chloroform gave colourless crystals, m.p. $130-131.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.25(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me})$, $2.46(3 \mathrm{H}, \mathrm{s}$, Tos-Me), $3.74(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.82(3 \mathrm{H}$, s , OMe), $6.50\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 6.87(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}$, $J 7,4-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{H}), 7.29(2 \mathrm{H}, \mathrm{d}, J 7.5,3-$ and $5-\mathrm{H}$ of tosyl) and $7.64\left(2 \mathrm{H}, \mathrm{d}, J 7.5\right.$, 2- and $6-\mathrm{H}$ of tosyl); $\lambda_{\max }(\mathrm{EtOH})$ / $\mathrm{nm} 218\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 6252\right), 243$ (7735) and 277infl (4248); $m / z(\%)(E I) 441\left(\mathrm{M}^{+}, 10\right), 286(100), 255$ (97), 254 (100), 91 (72) and 42 (65); (CI) 442 (80) and 288 (100) (Found: C, 65.3; $\mathrm{H}, 6.15 ; \mathrm{N}, 3.15 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 6.16 ; \mathrm{N}$, 3.17%).

Crystallisation of 13 from ethanol-chloroform gave colourless crystals, m.p. $147.5-148^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.15(3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}-\mathrm{Me}), 3.75(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.30(2 \mathrm{H}, \mathrm{s}$, Ar-H), $7.30(2 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{and} 5-\mathrm{H}$ of tosyl) and $7.53(2 \mathrm{H}, \mathrm{d}, J 7$, 2 - and 6-H of tosyl); $m / z(\%)(E I) 351\left(\mathrm{M}^{+}, 40\right)$ and 196 (100); (CI) 352 (100) and 197 (80).

The mixture of the two products (200 mg) was submitted to PLC (silica, ether-hexane, 1:1) and gave 60 mg of 3 g (total yield 13%) and 40 mg of 13 (total yield 12%).

A further preparation using a lower reaction temperature (7 h at $150{ }^{\circ} \mathrm{C}+16 \mathrm{~h}$ at $180^{\circ} \mathrm{C}$) gave 16% of 3 g and 11% of 13.

4'-(5,5-Dimethyl-1,3-dioxan-2-yl)-3,4,5-trimethoxy-N-toluene-p-sulfonyldiphenylamine $\mathbf{3 h}$. A mixture of the sulfonamide $9 \mathrm{e}(1 \mathrm{~g}, 0.003 \mathrm{~mol})$, the aryl bromide $7 \mathrm{f}(1.63 \mathrm{~g}, 0.006 \mathrm{~mol})$, copper bronze $(0.45 \mathrm{~g})$ and potassium carbonate $(0.15 \mathrm{~g})$ was heated under an atmosphere of nitrogen at $180^{\circ} \mathrm{C}$ for 12 h . Work-up by method (b) gave a brown oil (2.30 g). Chromatography (ethyl acetate-light petroleum, $35: 65$) afforded the product 3 h as an off-white solid ($1.07 \mathrm{~g}, 67 \%$), m.p. $143-145^{\circ} \mathrm{C}$. Crystallisation from ethyl acetate-light petroleum gave the sulfonamide $\mathbf{3 h}$ as colourless needles, m.p. $147-148{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.80$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{CMe}$), $1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CMe}\right.$), 2.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), $3.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13,2 \times \mathrm{OCHCMe} 2), 3.72(6 \mathrm{H}, \mathrm{s}, 3-\mathrm{and} 5-\mathrm{OMe})$, $3.77(2 \mathrm{H}, \mathrm{d}, J 13,2 \times \mathrm{OCHCMe} 2), 3.80(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 5.38$ (1 H, s, Ar-CH), $6.40(2 \mathrm{H}, \mathrm{s}, 2-$ and $6-\mathrm{H}), 7.27$ (2 H , overlapping d, $J 8,2 \times$ Ar-H of tosyl ortho to Me), $7.30(2 \mathrm{H}$, overlapping d, $J 8,3^{\prime}$ - and 5^{\prime} - or 2^{\prime} - and $\left.6^{\prime}-\mathrm{H}\right), 7.46\left(2 \mathrm{H}, \mathrm{d}, J 8,2^{\prime}\right.$ - and 6^{\prime} - or 3^{\prime} and $\left.5^{\prime}-\mathrm{H}\right)$ and $7.64(2 \mathrm{H}, \mathrm{d}, J 8,2 \times$ Ar-H of tosyl meta to Me); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 224\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 29400\right)$ (Found: M^{+}, 527.1954. $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{7}$ requires $M, 527.1977$).

Attempted preparation of 2,4-dimethoxy-4'-(5,5-dimethyl-1,3-dioxan-2-yl)-N-toluene-p-sulfonyldiphenylamine. The sulfonamide $9 \mathrm{f}(1.6 \mathrm{~g}, 0.0052 \mathrm{~mol})$, and aryl bromide $7 \mathrm{f}(2.6 \mathrm{~g}, 0.0096$ $\mathrm{mol})$, copper bronze $(0.8 \mathrm{~g})$ and potassium carbonate $(0.23 \mathrm{~g})$ were heated under an atmosphere of nitrogen at $175^{\circ} \mathrm{C}$ for 34 h . Method (b) work-up was followed by the addition of fresh
copper bronze $(0.4 \mathrm{~g})$, potassium carbonate $(0.1 \mathrm{~g})$ and bromide 7f $(0.5 \mathrm{~g}, 0.0018 \mathrm{~mol})$. The mixture was again heated under nitrogen at $175^{\circ} \mathrm{C}$ for 27 h (total 61 h). Work-up by method (b) gave a green oil (3.63 g) which on chromatography (ethyl acetate-light petroleum, 10:90) gave a yellow oil $(0.659,25 \%)$ which solidified on cooling. Part of this oil was crystallised from chloroform-light petroleum affording the pure 2,4-dimethoxy-4',4"-bis(5,5-dimethyl-1,3-dioxan-2-yl)triphenylamine 12 as colourless crystals, m.p. $95-97^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.79(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, 1.30 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}$), 3.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.63 ($4 \mathrm{H}, \mathrm{d}, J 11$, $4 \times \mathrm{OCHCMe}_{2}$), $3.75\left(4 \mathrm{H}, \mathrm{d}, J 11,4 \times \mathrm{OCHCMe}_{2}\right), 3.81$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.32(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar}-\mathrm{CH})$, $6.44(1 \mathrm{H}, \mathrm{dd}, J 9,3$, $5-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{d}, J 3,3-\mathrm{H}), 6.94\left(4 \mathrm{H}, \mathrm{d}, J 9,2^{\prime}-\right.$ and $6^{\prime}-\mathrm{H}$ and $2^{\prime \prime}-$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.02(1 \mathrm{H}, \mathrm{d}, J 9,6-\mathrm{H})$ and $7.30\left(4 \mathrm{H}, \mathrm{d}, J 9,3^{\prime}-\right.$ and $5^{\prime}-$ H and $3^{\prime \prime}$ - and $\left.5^{\prime \prime}-\mathrm{H}\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 210\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 19$ 980) and 301 (10 330); $m / z(\%)(E I) 535\left(\mathrm{M}^{+}+2,12\right)$, $534\left(\mathrm{M}^{+}+1,36\right)$ and $533\left(\mathrm{M}^{+}, 100\right)$ (Found: C, 72.0; H, 7.15; $\mathrm{N}, 2.7 \% ; \mathrm{M}^{+}, 533.2778 . \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{6}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 7.37$; $\mathrm{N}, 2.62 \% ; M, 533.27768$).

N-(3',4'-Methylenedioxyphenyl)2,5-dimethyl-N-(toluene-psulfonyl)aniline $\mathbf{3 i}$. The sulfonamide $9 \mathrm{~g}(3 \mathrm{~g}, 0.01 \mathrm{~mol})$, the aryl bromide $7 \mathrm{~b}(2.4 \mathrm{~g}, 0.013 \mathrm{~mol})$, copper bronze $(1.5 \mathrm{~g})$ and potassium carbonate $(0.5 \mathrm{~g})$ were heated at $180^{\circ} \mathrm{C}$ for 9 h . Workup by method (b) gave an oily solid (4.8 g) which was submitted to vacuum filtration through a silica column using solvent gradient (ether-light petroleum, 20:80 to $45: 55$) and gave the product 3 i as an orange solid ($1.13 \mathrm{~g}, 29 \%$), m.p. $148-150^{\circ} \mathrm{C}$. Crystallisation from ether gave the sulfonamide $\mathbf{3 i}$ as colourless crystals, m.p. $153-154^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.31(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 2.47\left(3 \mathrm{H}, \mathrm{s}\right.$, tosyl-Me), $5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.70(1 \mathrm{H}, \mathrm{d}, J$ $\left.8,5^{\prime}-\mathrm{H}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd}, J 8,2,6^{\prime}-\mathrm{H}\right), 6.85\left(2 \mathrm{H}, \mathrm{m}, 6-\right.$ and $\left.2^{\prime}-\mathrm{H}\right)$, $7.03(1 \mathrm{H}, \mathrm{d}, J 8,4-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d}, J 8,3-\mathrm{H}), 7.26(2 \mathrm{H}, \mathrm{d}, J 8$, Ar-H of tosyl ortho to Me) and $7.56(2 \mathrm{H}, \mathrm{d}, J 8$, Ar-H of tosyl meta to Me); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 199\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 156010\right)$, 266 (25 550) and 271 (25 930); $m / z(\%)$ (EI) $395\left(\mathrm{M}^{+}, 30\right), 240$ (100), 210 (50) and 182 (60); (CI) 396 (90) and 242 (100) (Found: $\mathrm{C}, 66.7 ; \mathrm{H}, 5.45, \mathrm{~N}, 3.5 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 66.8 ; \mathrm{H}, 5.35$; $\mathrm{N}, 3.54 \%$).

A further fraction was obtained $(0.8 \mathrm{~g})$ and it was submitted to PLC (silica, ether-light petroleum, 1:1) to give 40 mg of the pure product 3 (total yield 35%).

Removal of the Tosyl Groups.-Attempted preparation of 14. A mixture of the sulfonamide $3 \mathrm{~h}(50 \mathrm{mg}, 0.095 \mathrm{mmol}), 33 \% \mathrm{HBr}$ in acetic acid $\left(0.2 \mathrm{~cm}^{3}\right)$ and glacial acetic acid $\left(3 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h when a precipitate formed. The solvent was removed, water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the pH was adjusted to 8 with $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. The aqueous solution was extracted with ether ($3 \times 25 \mathrm{~cm}^{3}$) and with ethyl acetate $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The two extracts were dried and the solvents were removed to give a total of $35 \mathrm{mg}(84 \%)$ of $\mathrm{N}-4^{\prime}$ -formyl-3,4,5-trimethoxy(toluene-p-sulfonyl)diphenylamine $\mathbf{3 j}$, m.p. $170-173{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.46(3 \mathrm{H}, \mathrm{s}$, Ar-Me), $3.74(6 \mathrm{H}, \mathrm{s}$, $2 \times$ OMe), $3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.41(2 \mathrm{H}, \mathrm{s}, 2-$ and $6-\mathrm{H}), 7.32$ (2 $\mathrm{H}, \mathrm{d}, J 8,2 \times \mathrm{Ar}-\mathrm{H}$ of tosyl), $7.44\left(2 \mathrm{H}, \mathrm{d}, J 8,2^{\prime}\right.$-and $\left.6^{\prime}-\mathrm{H}\right), 7.67$ ($2 \mathrm{H}, \mathrm{d}, J 8,2 \times$ Ar-H of tosyl), $7.82\left(2 \mathrm{H}, \mathrm{d}, J 8,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$ and $9.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z(\%)(\mathrm{FD}) 441\left(\mathrm{M}^{+}, 100\right)$.
4^{\prime}-(5,5-Dimethoxy-1,3-dioxan-2-yl)-N-3,4,5-trimethoxyphenyldiphenylamine 14. The sulfonamide $3 \mathrm{~h}(0.2 \mathrm{~g}, 0.38 \mathrm{~mol})$ was dissolved with stirring in dry toluene $\left(5 \mathrm{~cm}^{3}\right)$. SMAH $^{8}\{\mathrm{a}$ solution of sodium bis(2-methoxyethoxy)aluminium hydride $\left[\mathrm{NaAlH}_{2}\left(\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{OMe}\right)_{2}\right] 3.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in toluene $\}\left(1 \mathrm{~cm}^{3}\right)$ was added with external cooling. The mixture was heated on a water bath $\left(50-80^{\circ} \mathrm{C}\right)$ with stirring, under nitrogen for 3 h . After cooling 10% aqueous sodium hydroxide solution was added dropwise ($5 \mathrm{~cm}^{3}$). The mixture was extracted with ether (4×5 cm^{3}) and the ether extracts were washed with saturated aqueous chloride $\left(2 \times 5 \mathrm{~cm}^{3}\right)$ and with water. The aqueous phases were
extracted again with ether ($10 \mathrm{~cm}^{3}$). The combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and after removal of the solvent gave a brown oil (120 mg). This was submitted to PLC (silica, ether-light petroleum, $60: 40$) and the amine 14 was obtained as a yellow oil ($20 \mathrm{mg}, 14 \%$); $\delta_{\mathrm{H}}(60 \mathrm{MHz})$ excluding signals due to impurities, 0.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $1.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.45(1 \mathrm{H}, \mathrm{br}$ s , NH), $3.79\left(13 \mathrm{H}, \mathrm{s}, 9 \mathrm{H}, 3 \times \mathrm{OMe}+4 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{CMe}_{2}\right)$, $5.40(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}), 6.28(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$ and $7.00-7.50(4 \mathrm{H}, \mathrm{m}$, other $\mathrm{Ar}-\mathrm{H}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3763,3590$ and 3416; $\mathrm{m} / \mathrm{z}(\%)$ (EI) 243 (100).

Removal of the tosyl group from the sulfonamide 3c. The sulfonamide $3 \mathrm{c}(0.25 \mathrm{~g}, 0.66 \mathrm{mmol})$ was dissolved with stirring in dry toluene ($5 \mathrm{~cm}^{3}$). SMAH ($0.78 \mathrm{~cm}^{3}, 2.64 \mathrm{mmol}$) was added. The yellow mixture was heated at reflux under nitrogen for 2.5 h and left stirring at room temperature overnight. 10% Sodium hydroxide solution ($10 \mathrm{~cm}^{3}$) was added dropwise and the mixture was extracted with ether ($10 \mathrm{~cm}^{3}$) and ethyl acetate $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with saturated aqueous sodium chloride ($2 \times 5 \mathrm{~cm}^{3}$), water $\left(5 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed to give a yellow oil $(0.25 \mathrm{~g})$. PLC (silica, ethyl acetate-light petroleum, 10:90) gave N-(3'-methoxyphenyl)-2,5-dimethylaniline 11c as a light yellow oil $(0.07 \mathrm{~g}, 45 \%) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-$ Me), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.25-7.40(7 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}$). This oil solidified and the solid was washed with small portions of light petroleum to give the amine 11c as colourless crystals, m.p. $42-44^{\circ} \mathrm{C} ; m / z(\%)(E I) 229\left(\mathrm{M}^{+}+2,9\right), 228\left(\mathrm{M}^{+}\right.$ $+1,59)$ and $227\left(\mathrm{M}^{+}, 100\right)$.

Removal of the tosyl group from the sulfonamide 3f. The sulfonamide $3 \mathrm{f}(0.5 \mathrm{~g}, 1.2 \mathrm{mmol})$ was dissolved with stirring in dry toluene ($5 \mathrm{~cm}^{3}$). SMAH was added ($1.3 \mathrm{~cm}^{3}, 4.3 \mathrm{mmol}$) and the mixture left stirring under nitrogen at room temperature for $5 \mathrm{~h} .10 \%$ Sodium hydroxide solution ($10 \mathrm{~cm}^{3}$) was added dropwise and the mixture was extracted as above. The organic extracts were washed with saturated sodium chloride (2×5 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and combined. Removal of solvent gave a green dark oil (0.35 g) which on PLC (silica, ether-light petroleum, 1:1) gave N-($2^{\prime}, 4^{\prime}$-dimethoxyphenyl)-2,5-dimethylaniline 11 b as a yellow oil ($40 \mathrm{mg}, 13 \%$); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.57$ ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.45 ($1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$) and $6.50-7.20(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.

Photocyclisation of Diphenylsulfonamides.-General procedure. The sulfonamides $3, c a .3 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ solutions in ethanol, were irradiated for 7 h under nitrogen, using a medium pressure Hg vapour lamp. After removal of solvent the oil which was obtained was purified by flash chromatography or by PLC.

1,4-Dimethylcarbazole 4c. The sulfonamide 3a ($0.2 \mathrm{~g}, 0.57$ mmol) in ethanol ($300 \mathrm{~cm}^{3}$) was irradiated. The orange oil obtained on PLC (silica, chloroform-ether, 1:1) gave an offwhite solid (100 mg), m.p. $75-77^{\circ} \mathrm{C}$. Crystallisation from light petroleum gave colourless crystals, m.p. $90-91^{\circ} \mathrm{C}$ (lit., ${ }^{22} 97-$ $98^{\circ} \mathrm{C}$) ($60 \mathrm{mg}, 54 \%$) which were shown to be $\mathbf{4 c}$ by comparison of NMR and UV with an authentic sample.
8 -Methoxy-1,4-dimethylcarbazole $4 \mathrm{~d} .{ }^{11}$ The sulfonamide 3b ($0.3 \mathrm{~g}, 0.79 \mathrm{mmol}$) in ethanol ($300 \mathrm{~cm}^{3}$) gave an orange oil which on PLC (silica, dichloromethane) gave the carbazole 4 d as an oily solid ($60 \mathrm{mg}, 34 \%$). Crystallisation from ethanol gave colourless crystals, m.p. $101-104^{\circ} \mathrm{C}$ (lit., ${ }^{11} 170^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.55(3 \mathrm{H}$, $\mathrm{s}, 1-\mathrm{Me}), 2.87$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 4.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.92 ($1 \mathrm{H}, \mathrm{d}, J 8$, $7-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{d}, J 7,2-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{t}, J$ $8,6-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$ and $8.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 238\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 5536\right), 246$ (5567), 249 (5584), 254 (5635), 256 (5584), 275 (4053), 285 (3794), 310infl (1617), 321 (2236) and 335 (2230); $m / z(\%)$ (EI) $225\left(\mathrm{M}^{+}, 100\right)$ and 210 (72) (Found: $\mathrm{M}^{+}, 225.1154 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$ requires M, 225.1154). A by product N -(2^{\prime}-methoxy-4'-toluene-p-sulfonylphenyl)aniline $\mathbf{1 7}$ with a lower R_{f} was also isolated as an oil (9
$\mathrm{mg}, 3 \%$); $\delta_{\mathrm{H}} 2.16$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), 2.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), 2.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of tosyl), $3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.76$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,6^{\prime}-\mathrm{H}\right), 6.92(1 \mathrm{H}, \mathrm{d}, J 8,4-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.15$ ($1 \mathrm{H}, \mathrm{d}, J 8,3-\mathrm{H}$), $7.25(2 \mathrm{H}$, partially obscured d, Ar-H of tosyl ortho to Me$), 7.33\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 7.40\left(1 \mathrm{H}, \mathrm{d}, J 8,5^{\prime}-\mathrm{H}\right)$ and 7.80 ($2 \mathrm{H}, \mathrm{d}, J 8$, Ar-H of tosyl meta to Me). A $\mathrm{D}_{2} \mathrm{O}$ shake removed the NH singlet at 6.22. Saturation of the ArMe protons at 2.16 enhanced the d at 7.15 by 8.5%. Saturation of the ArMe group at 2.30 enhanced the signal at 7.08 by 8% and that at 6.92 by 3%. Saturation of the signal at 3.96 (OMe) gave a 15% enhancement of the singlet at $7.33 ; m / z(\%)$ (EI) $381\left(\mathrm{M}^{+}, 12\right), 84(70)$ and 49 (100); (CI) 382 (100) (Found: $\mathrm{M}^{+}, 381.1399 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires $M, 381.1399$).

5-Methoxy-1,4-dimethylcarbazole 4b. ${ }^{6 c}$ The sulfonamide 3c $(0.2 \mathrm{~g}, 0.53 \mathrm{mmol})$ in ethanol ($300 \mathrm{~cm}^{3}$) gave a brown oil which on PLC (silica, chloroform) gave 4b as an oil ($30 \mathrm{mg}, 25 \%$), identified by comparison of its NMR and UV spectra with the published ${ }^{6 c}$ data.

6-Methoxy-1,4-dimethylcarbazole 4a. ${ }^{10}$ The sulfonamide 3d $(0.3 \mathrm{~g}, 0.79 \mathrm{mmol})$ in ethanol ($300 \mathrm{~cm}^{3}$) gave a brown oil which on PLC (silica, dichloromethane) gave the carbazole $4 \mathrm{a}(0.13 \mathrm{~g}$, 73%), m.p. $\quad 126-129^{\circ} \mathrm{C}$. Crystallisation from EtOH gave colourless needles, m.p. $140-141^{\circ} \mathrm{C}$ (lit., ${ }^{10} 140-141^{\circ} \mathrm{C}$) with identical NMR and UV data to the literature values.

5,7-Dimethoxy-1,4-dimethylcarbazole 4 e . The sulfonamide 3 e ($300 \mathrm{mg}, 0.73 \mathrm{mmol}$) in ethanol ($300 \mathrm{~cm}^{3}$) gave a brown oil which on PLC (silica, ether-light petroleum, 1:1) gave the impure carbazole as an orange oil ($80 \mathrm{mg}, 43 \%$). Crystallisation from ethanol afforded the carbazole 4 e as colourless crystals (23%), m.p. $130-132^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.49(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.89(3 \mathrm{H}, \mathrm{s}$, 4-Me), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.29(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$), $6.55(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{d}, J 7,2-\mathrm{H})$ and $7.94\left(1 \mathrm{H}, \mathrm{s}\right.$ br, NH); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 216\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 21230$), 248 (34 270) 285 infl (7140), 292 (9000), 310 (2986) and 324 (2350) (Found: $\mathrm{M}^{+}, 255.1259 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires M, 255.1259).

6,8-Dimethoxy-1,4-dimethylcarbazole $4 \mathbf{4 f}^{3}$ The sulfonamide 3 f $(0.2 \mathrm{~g}, 0.49 \mathrm{mmol})$ in ethanol ($300 \mathrm{~cm}^{3}$) gave an orange oil which on PLC (silica, ether-light petroleum, 5:95) gave a colourless oil ($35 \mathrm{mg}, 23 \%$) shown to be 4 f by NMR and UV spectroscopy. Crystallisation from ethanol gave colourless crystals, m.p. 182$184^{\circ} \mathrm{C}$ (lit., ${ }^{3}{ }^{186-186.5}{ }^{\circ} \mathrm{C}$).

5,6,7-Trimethoxy-1,4-dimethylcarbazole 4g. ${ }^{1}$ The sulfonamide $3 \mathrm{~g}(60 \mathrm{mg}, 0.136 \mathrm{mmol})$ in ethanol ($300 \mathrm{~cm}^{3}$) gave a brown oil which on PLC (silica, ether-kexane, 1:1) gave the carbazole $\mathbf{4 g}$ ($6 \mathrm{mg}, 15 \%$) as an orange oil whose spectroscopic data (NMR and UV) were identical to those from the literature. ${ }^{1}$

6,7-Methylenedioxy-1,4-dimethylcarbazole 4 i. 23 The sulfonamide $3 \mathrm{i}(0.3 \mathrm{~g}, 0.8 \mathrm{mmol})$ in ethanol gave a brown oil which on PLC (silica, dichloromethane) gave the carbazole $4 \mathbf{i}$ as an orange solid ($45 \mathrm{mg}, 24 \%$), m.p. $148-150^{\circ} \mathrm{C}$. Crystallisation from ethanol gave colourless crystals, m.p. $157.5-158.5^{\circ} \mathrm{C}$ (lit., ${ }^{23}{ }^{158-160}{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.50(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.78(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $6.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}, 3-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.05$ ($1 \mathrm{H}, \mathrm{d}, J 8,2-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 208, 237, 271, 305, 333 and 347.

Attempted cyclisation of 3 h . The sulfonamide $3 \mathrm{~h}(0.3 \mathrm{~g}, 0.57$ mmol) in ethanol ($300 \mathrm{~cm}^{3}$) was irradiated for 4.5 h under nitrogen. The orange oil obtained was submitted to vacuum filtration through a column using solvent gradient (ether-light petroleum, 1:9 to 5:5) and gave the photo-Fries product 18 as an oil ($80 \mathrm{mg}, 27 \%$); $\delta_{\mathrm{H}} 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 2.44 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{Me}$), 3.68 and $3.71(9 \mathrm{H}, 2 \mathrm{~s}, 3 \times \mathrm{OMe}$), $3.64-$ $3.80\left(4 \mathrm{H}\right.$, partially obscured multiplets, $\left.2 \times \mathrm{OCH}_{2}\right), 5.41(1 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar}-\mathrm{CHO}), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.27$ (4 H , obscured multiplet, $2 \times \mathrm{Ar}-\mathrm{H}$ of tosyl and $2 \times \mathrm{Ar}-\mathrm{H}$ of the acetal-substituted ring), $7.50(2 \mathrm{H}, \mathrm{d}, J 8,2 \times \mathrm{Ar}-\mathrm{H}), 7.84(2 \mathrm{H}, \mathrm{d}, J 8,2 \times \mathrm{Ar}-\mathrm{H})$ and $9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$. Irradiation of the doublet at 7.84 simplified
the obscured multiplet at 7.27 but did not affect the doublet at $7.80 ; \mathrm{m} / \mathrm{z}(\%)(\mathrm{CI}) 528\left(\mathrm{M}^{+}+1,100\right)$ and 372 (60) (Found: M^{+}, $528.2056 . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{7} \mathrm{~S}$ requires $M, 528.20535$).
3,5-Dimethoxyacetanilide. 3,5-Dimethoxyaniline (10 g , 0.06 mol) was carefully added to a mixture of glacial acetic acid (6.8 g) and acetic anhydride (6.8 g) with zinc dust (30 mg). The mixture was refluxed for 0.5 h . The hot solution was then poured into water ($250 \mathrm{~cm}^{3}$) with vigorous stirring to give a pale yellow solid. This was collected, washed with water ($200 \mathrm{~cm}^{3}$) and air dried. The crude material was recrystallised from ethyl acetate to give the pure anilide as a colourless crystalline solid $(10.2 \mathrm{~g}$, 80%), m.p. $152-153^{\circ} \mathrm{C}$ (lit., ${ }^{24} 155-156^{\circ} \mathrm{C}$).

Goldberg Reactions.-(b) Acetanilides. Copper bronze was activated by treating with a $2 \%(w / v)$ solution of iodine in acetone and stirring for 15 min . Filtration was followed by washing with acetone before drying under vacuum. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was dried at $130^{\circ} \mathrm{C}$ overnight. Copper(I) oxide and copper(I) bromide were used without further purification.
Coupling of 3,5-dimethoxyacetanilide with nitrile 19 using copper bronze. The anilide ($2 \mathrm{~g}, 0.01 \mathrm{~mol}$) and bromo nitrile 19 (2 $\mathrm{g}, 0.01 \mathrm{~mol})$ were melted together in an atmosphere of nitrogen. Copper bronze (2 g) and potassium carbonate (2 g) were added and the mixture heated at $160-170^{\circ} \mathrm{C}$ for 10.5 h . After cooling the mixture was extracted with dichloromethane ($8 \times 100 \mathrm{~cm}^{3}$). The combined extracts were washed with water $\left(500 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed to give a viscous brown oil $(3.6 \mathrm{~g})$. Flash chromatography, eluting with increasing concentrations of light petroleum-ethyl acetate then ethyl acetatemethanol yielded three major fractions. Fractions A and B were mixtures and were combined before being re-chromatographed. Fraction C was identified as unchanged anilide (1 g). Careful chromatography, eluting with increasing concentrations of ether in light petroleum yielded three major products. First eluted was unchanged nitrile 19 (53 mg), followed by a yellow crystalline solid ($151.6 \mathrm{mg}, 6 \%$), m.p. ${ }^{137-145^{\circ} \mathrm{C} \text {. Recrystal- }}$ lisation from light petroleum-ether gave pure 4-cyano-N-($3^{\prime}, 5^{\prime}-$ dimethoxyphenyl)-2-methylaniline 5 a as yellow needles, m.p. ${ }^{148-149}{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.26\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 4.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right)$, $5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{NH}), 6.24\left(1 \mathrm{H}, \mathrm{t}, J 2,4^{\prime}-\mathrm{H}\right), 6.30\left(2 \mathrm{H}, \mathrm{d}, J 2,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.24(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$ and 7.43 $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 210\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 97500) and 314 (72500); $v_{\text {max }} / \mathrm{cm}^{-1} 3300$, 2250 and $1600 ; m / z$ (\%) (EI) $269\left(\mathrm{M}^{+}, 100\right), 253$ (37) and 237 (24) (Found: C, 71.6; 6.05. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.6 ; \mathrm{H}, 6.03 ; \mathrm{N}, 10.5 \%$). Finally a colourless crystalline solid ($26 \mathrm{mg}, 1 \%$) was isolated, identified as 4-bromo-3-methyl- N -(2-methyl-4-cyanophenyl)benzamide 20 , m.p. $180^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.40\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.52\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right)$, 7.50-7.78 (6 H , complex $\mathrm{m}, 2-, 5-3^{\prime}-, 5^{\prime}-, 6^{\prime}-\mathrm{H}$ and NH$)$ and 8.54 $(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 219\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 42850) and $260(78570) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3300,2230$ and 1650 ; $m / z(\%)(E I) 330\left(M^{+}, 17\right), 328$ (15), 197 (100) (F.D.), 327 and 329 (Found: C, 58.6; H, 4.33; N, 8.45\%; M ${ }^{+}$, 328.027. $\mathrm{C}_{16} \mathrm{H}_{13}{ }^{-}$ $\mathrm{BrN}_{2} \mathrm{O}$ requires C, $58.4 ; \mathrm{H}, 3.98 ; \mathrm{N}, 8.51 \% ; M, 328.021$). By variation of the conditions the yield of the amide 20 was reduced.

Synthesis of the amide 20 from the bromo nitrile 19. The bromonitrile 19 ($900 \mathrm{mg}, 4.6 \mathrm{mmol}$) was heated with activated copper (1 g) and potassium carbonate (1 g) at $150^{\circ} \mathrm{C}$ in an atmosphere of nitrogen for 10 h . After cooling, the copper residues were extracted with dichloromethane ($5 \times 20 \mathrm{~cm}^{3}$). Removal of solvent gave a brown oily solid (600 mg) which on chromatography gave the crude amide 20 as a tan coloured solid (300 mg). Recrystallisation from ether-light petroleum gave the pure amide 20 as needles, m.p. $180{ }^{\circ} \mathrm{C}$. $\left(v_{\text {max }} / \mathrm{cm}^{-1}\right.$ 1650) its other spectral properties were identical to those described above. Concentration of the mother liquors gave a tan coloured solid (12 mg), m.p. $136-137^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1680$ identified as a rotamer of 20 .

Hydrolysis of amide 20. The amide 20 ($163.3 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in ethanolic potassium hydroxide ($400 \mathrm{mg}, 7$ mmol , in $8 \mathrm{~cm}^{3}$) and heated to $70^{\circ} \mathrm{C}$ (bath temperature) with stirring for 4.5 h then at $80^{\circ} \mathrm{C}$ for a further 3 h before cooling. The mixture was then poured into water $\left(50 \mathrm{~cm}^{3}\right)$ and the basic solution extracted with ethyl acetate $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with water ($100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness to give the crude amine 21 as an off-white solid (69 mg), m.p. $87-93^{\circ} \mathrm{C}$. Recrystallisation from ether-light petroleum gave the pure 4-cyano-2-methylaniline 21 as colourless crystals, m.p. $90-93{ }^{\circ} \mathrm{C}$ (lit., ${ }^{16} 94-95^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.16\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 4.08(2 \mathrm{H}, \mathrm{s}, \mathrm{br}$, $\left.\mathrm{NH}_{2}\right), 6.62(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H})$ and $7.26(2 \mathrm{H}, \mathrm{d}, J 8,3-$ and $5-\mathrm{H})$. Acidification of the aqueous solution precipitated a white solid. This was extracted into chloroform ($3 \times 50 \mathrm{~cm}^{3}$) and the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent gave the pure 4-bromo-3-methylbenzoic acid 22 as colourless needles ($67.1 \mathrm{mg}, 63 \%$), m.p. 204-205 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{17}{ }^{2} 209-$ $210^{\circ} \mathrm{C}$); mixed m.p. $202-207^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.36\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 7.53$ ($1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H}$), $7.73(1 \mathrm{H}, \mathrm{d}, J 6,6-\mathrm{H})$ and $7.86(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$. Spectral data were identical for samples prepared as described in the literature for $\mathbf{2 1}$ and from a commercial sample of 22.

4-Cyano- N -($3^{\prime}, 5^{\prime}$-dimethoxyphenyl)-2-methylacetanilide 10a. 3,5-Dimethoxyacetanilide ($3 \mathrm{~g}, 0.015 \mathrm{~mol}$) and nitrile $19(1.5 \mathrm{~g}$, 7.7 mmol) were melted together under an atmosphere of N_{2} and treated with copper(I) oxide $(2.4 \mathrm{~g}, 0.017 \mathrm{~mol})$ and potassium carbonate ($1.5 \mathrm{~g}, 0.011 \mathrm{~mol}$). The mixture was maintained at $190-200^{\circ} \mathrm{C}$ for 7 h . Work-up via ethyl acetate gave a brown solid (4 g). Chromatography (ethyl acetate-light petroleum) gave the diphenylamine $5 \mathrm{a}(81.5 \mathrm{mg}, 2 \%$) and a pale brown oil ($1.7 \mathrm{~g}, 72 \%$) identified by EI mass spectrometry as the amide 10a. A sample was crystallised from ether to give an off white solid, m.p. $134-138^{\circ} \mathrm{C}$. Recrystallisation from ether-light petroleum gave the pure diphenylamide 10 a as a white crystalline solid, m.p. $136-137^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 2220(\mathrm{CN})$ and $1680\left(\mathrm{C}=0\right.$ amide); $\lambda_{\max } \quad 250 / \mathrm{nm} \quad\left(\varepsilon / \mathrm{dm}^{3} \quad \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 21600) and 208 (63300). The ${ }^{1} \mathrm{H}$ NMR spectrum gave only broad peaks. Heating to $100^{\circ} \mathrm{C}$ failed to sharpen the peaks; m / z (\%) $310\left(\mathrm{M}^{+}, 67\right), 268(98), 253$ (50) and 237 (31) (Found: C, 70.0; $\mathrm{H}, 6.1 ; \mathrm{N}, 9.02 \% ; \mathrm{M}^{+}, 310.1306 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C , $69.6 ; \mathrm{H}, 5.90 ; \mathrm{N}, 9.03 \% ; M, 310.1317$).
Hydrolysis of diphenylamide 10a. The diphenylamide 10a (1.5 $\mathrm{g}, 4.8 \mathrm{mmol}$) was heated to $60-70^{\circ} \mathrm{C}$ (bath temperature) in ethanol ($70 \mathrm{~cm}^{3}$) containing potassium hydroxide ($3.95 \mathrm{~g}, 0.7$ $\mathrm{mol})$ with stirring for 1 h . Normal work-up gave the diphenylamine 5 a as yellow crystals ($1.2 \mathrm{~g}, 95 \%$); m.p. $138-142^{\circ} \mathrm{C}$. All spectral data were in agreement with that already recorded. This product was normally used without further purification.
4-Bromo-N-(3,5-dimethoxyphenyl)-3-methylcinnamamide 24. The bromobenzaldehyde $23(1 \mathrm{~g}, 7 \mathrm{mmol})$ and 3,5 -dimethoxyacetanilide ($1.4 \mathrm{~g}, 7 \mathrm{mmol}$) were heated under an atmosphere of N_{2} with copper(I) oxide (2.2 g) and potassium carbonate (1.4 g) at $180-200^{\circ} \mathrm{C}$ for 6 h . Work-up via ethyl acetate gave a brown oil (1.5 g). Flash chromatography, eluting with ethyl acetatelight petroleum ($3: 7$) gave the starting aldehyde $23(233.2 \mathrm{mg})$, an orange foam ($246.5 \mathrm{mg}, 53 \%$) and starting anilide (500 mg). The orange foam was crystallised from ether-light petroleum to yield a colourless crystalline solid, identified as 4 -bromoN -(3,5-dimethoxyphenyl)-3-methylcinnamamide 24, m.p. 129$130{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.77\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 6.26$ $\left(1 \mathrm{H}, \mathrm{t}, J 2,4^{\prime}-\mathrm{H}\right), 6.53(1 \mathrm{H}, \mathrm{d}, J 14$, trans $\mathrm{CH}=\mathrm{CHCO}), 6.90$ ($2 \mathrm{H}, \mathrm{s} \mathrm{br}, 2^{\prime}+6^{\prime}-\mathrm{H}$), 7.17 ($\left.1 \mathrm{H}, \mathrm{dd}, J 6,2,6-\mathrm{H}\right), 7.33(1 \mathrm{H}, \mathrm{d}, J 2$, $2-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH})$ and $7.66(1 \mathrm{H}$, d, $J 14$, trans $\mathrm{CH}=\mathrm{CHCO}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 301\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 3200\right) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3300,1680,1630$ and 1600; m/z (EI) (\%) $377\left(\mathrm{M}^{+}, 16\right)$ and $375\left(\mathrm{M}^{+}, 16\right)$ (Found: C, 57.4; H, 4.88; N, 3.58. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{3}$ requires C, $57.5 ; \mathrm{H}, 4.79$; $\mathrm{N}, 3.72 \%$).

2-(4'-Bromo-3'-methylphenyl)-5,5-dimethyl-1,3-dioxane 25. 4-Bromo-3-methylbenzaldehyde ${ }^{15 b}(1 \mathrm{~g}, 5 \mathrm{mmol})$ and 2,2-dimethylpropane-1,3-diol $(0.8 \mathrm{~g}, 9.1 \mathrm{mmol})$ were heated at reflux in dry toluene $\left(60 \mathrm{~cm}^{3}\right)$ containing toluene-p-sulfonic acid (45 mg) under a Dean and Stark apparatus for 6 h . The mixture was allowed to stand overnight before being basified to pH 9 with ethanolic potassium hydroxide. The mixture was washed with water ($150 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Removal of the solvent gave the pure dioxane 25 as a yellow oil which solidified on standing ($1.39 \mathrm{~g}, 98 \%$), m.p. $53-54^{\circ} \mathrm{C}$. Recrystallisation from pentane failed to sharpen the m.p.; $\delta_{\mathrm{H}} 0.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right)$, $1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{Me}\right), 3.62(2 \mathrm{H}, \mathrm{d}, J 14$, $2 \times \mathrm{CHO}), 3.78(2 \mathrm{H}, \mathrm{d}, J 14,2 \times \mathrm{CHO}), 5.32(1 \mathrm{H}, \mathrm{s}$, Ar$\mathrm{CHO}), 7.15\left(1 \mathrm{H}, \mathrm{dd}, J 8,2,6^{\prime}-\mathrm{H}\right), 7.38\left(1 \mathrm{H}, \mathrm{d}, J 2,2^{\prime}-\mathrm{H}\right)$ and 7.52 (1 H, d, J8, $\left.5^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI})(\%) 285\left(\mathrm{M}^{+}, 94\right), 269(73), 199$ (100), 171 (71) and 115 (74) (Found: C, 54.2; H, 5.95. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 54.5 ; \mathrm{H}, 6.01 \%$).

N-(3',5'-Dimethoxyphenyl)-4-(5,5-dimethyl-1,3-dioxan-2-yl)-2-methylacetanilide 26. 3,5-Dimethoxyacetanilide ($0.4 \mathrm{~g}, 2$ $\mathrm{mmol})$ and the dioxane $25(0.5 \mathrm{~g}, 1.7 \mathrm{mmol})$ were melted together in an atmosphere of N_{2}. Copper bronze $(0.5 \mathrm{~g})$ and potassium carbonate $(0.5 \mathrm{~g})$ were added and the mixture heated to $185-195^{\circ} \mathrm{C}$ for 5.5 h . The slurry was cooled and extracted with ethyl acetate ($5 \times 20 \mathrm{~cm}^{3}$). Removal of the solvent gave a brown oil (500 mg) and chromatography (ethyl acetate-light petroleum) ($1: 4$ to $4: 1$) gave 2 main fractions. Fraction 1 (200 mg) was found to be a complex mixture from which only starting material was isolated. Fraction 2 a viscous gum (246.8 $\mathrm{mg}, 36 \%$) was identified as the required diphenylamide 26. A small sample was crystallised from ether; m.p. $110-112^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ $0.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{br}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.67(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CHO}), 3.74(6$ $\left.\mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 3.78(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHO}), 5.40(1 \mathrm{H}, \mathrm{s}$, ArCHO $), 6.27\left(1 \mathrm{H}, \mathrm{s}\right.$ br, $\left.4^{\prime}-\mathrm{H}\right), 6.42\left(2 \mathrm{H}, \mathrm{s}\right.$ br, 2^{\prime} - and $\left.6^{\prime}-\mathrm{H}\right), 7.26$ ($1 \mathrm{H}, \mathrm{s}$ br, 3 H), $7.40(1 \mathrm{H}, \mathrm{s} \mathrm{br}, 5-\mathrm{H})$ and $7.46(1 \mathrm{H}, \mathrm{s} \mathrm{br}, 6-\mathrm{H})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 222\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 2400\right)$ and 287 (32 500); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 1680 ; \mathrm{m} / \mathrm{z}(\%)$ (EI) $399\left(\mathrm{M}^{+}, 72\right)$, 398 (100), 360 (75), 312 (68), 274 (60), 273 (95), 272 (72), 178 (93), 115 (72) and 69 (79) (Found: M^{+}, 399.2028. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{5}$ requires $M, 399.2045$).

Hydrolysis of diphenylamide 26. The diphenylamide 26 (240 $\mathrm{mg}, 0.60 \mathrm{mmol}$) was stirred at room temperature in a solution of potassium hydroxide ($600 \mathrm{mg}, 0.01 \mathrm{~mol}$) in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ for 1 h . After 2 h at $70-80^{\circ} \mathrm{C}$ normal work-up gave an orange oil, which was identified as N -($3^{\prime}, 5^{\prime}$-dimethoxyphenyl)-4-(5,5-dimethyl-1,3-dioxan-2-yl-2-methylaniline $27(129.1 \mathrm{mg}, 65 \%) ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.64(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.74\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 5.34(1 \mathrm{H}$, $\mathrm{s}, \mathrm{ArCHO}), 5.40(1 \mathrm{H}, \mathrm{s}$ br, NH $), 6.03\left(1 \mathrm{H}, \mathrm{t}, J 2,4^{\prime}-\mathrm{H}\right), 6.13(2 \mathrm{H}, \mathrm{d}$, $J 2,2^{\prime}$-and $\left.6^{\prime}-\mathrm{H}\right), 7.26(2 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H})$ and $7.33(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 216\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 23000\right), 238$ (12 700) and $288(12800) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1600$ and $1520 ; m / z(\%)$ (EI) $358\left(\mathrm{M}^{+}+1,90\right), 357\left(\mathrm{M}^{+}, 25\right), 271(100)$ and $195(20)$ (Found: $\mathbf{M}^{+}, 357.1908 . \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires $M, 357.1939$).

4-Formyl- N -($3^{\prime}, 5^{\prime}$-dimethoxyphenyl)-2-methylaniline 28 from the dioxane 27. The diphenylamine $27(379.5 \mathrm{mg}, 1.1 \mathrm{mmol})$ was stirred in dioxane ($30 \mathrm{~cm}^{3}$) containing $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 20 \mathrm{~cm}^{3}\right)$ at room temperature for 45 min . Normal work-up gave an orange oil. Flash chromatography and elution with ether-light petroleum (1:1) gave the crude formyldiphenylamine 28 (147.6 $\mathrm{mg}, 49 \%$), m.p. $99-104^{\circ} \mathrm{C}$. Recrystallisation from ether-light petroleum gave a yellow microcrystalline solid, m.p. $109.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.34\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.81\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 5.62(1 \mathrm{H}, \mathrm{s}$, $\mathrm{br}, \mathrm{NH}), 6.25\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 6.36\left(2 \mathrm{H}, \mathrm{d}, J 2,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.31$ $(1 \mathrm{H}, \mathrm{d}, J 6,6-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 9.80$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 220\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 60000\right)$ 245 (35770) and 345 (72 300); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3440,1670$, 1600 and $1520 ; m / z(\%)(E I) 272(M+1,54)$ and $271\left(\mathrm{M}^{+}, 100\right)$
(Found: C, $71.0 ; \mathrm{H}, 6.55: \mathrm{N}, 5.19 \% ; \mathrm{M}^{+}, 271.1192 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 6.32 ; \mathrm{N}, 5.16 \% ; M, 271.1208$).

Reduction of the Cyanodiphenylamine 5a.-Cyanodiphenylamine $5 \mathrm{a}(320 \mathrm{mg}, 1.19 \mathrm{mmol})$ in dry toluene $\left(10 \mathrm{~cm}^{3}\right)$ containing dry dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ under an atmosphere of N_{2} was cooled to $-78^{\circ} \mathrm{C}$ and diisobutylaluminium hydride (DIBAL) $\left(1.2 \mathrm{~cm}^{3}, 1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in toluene, 1.7 mmol$)$ was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h and then allowed to warm to room temperature over 2 h . Methanol $\left(2 \mathrm{~cm}^{3}\right)$ was added, followed by $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(2$ cm^{3}). Work-up with chloroform ($5 \times 10 \mathrm{~cm}^{3}$) gave a dark orange solid ($253.2 \mathrm{mg}, 79 \%$), m.p. $103-107^{\circ} \mathrm{C}$. Recrystallisation from ether-light petroleum gave yellow microcrystals identified as the formyl diphenylamine 28, m.p. $109-110^{\circ} \mathrm{C}$, identical spectroscopically to the material prepared previously; mixed m.p. $108-110^{\circ} \mathrm{C}$.

For the following Goldberg coupling reactions, the potassium carbonate was dried at $180^{\circ} \mathrm{C}$ for 24 h prior to its use.

Coupling of acetanilide with 4-bromo-3-methylbenzonitrile 19. (a) Using activated copper bronze. Acetanilide (1.4 g, 10.4 $\mathrm{mmol})$ and nitrile $19(1.0 \mathrm{~g}, 5.1 \mathrm{mmol})$ were melted together in a dry nitrogen atmosphere. Copper bronze $(1.5 \mathrm{~g})$ and potassium carbonate $(1.25 \mathrm{~g})$ were added to the melt, and the mixture heated to $200-210^{\circ} \mathrm{C}$ for 27 h . Extraction with ethyl acetate yielded a brown solid (1.34 g) which on flash chromatography and elution with ethyl acetate-light petroleum (30-70\% ethyl acetate) gave three major products. The first was identified as 4-cyano-2-methyl- N -phenylaniline $\mathbf{5 b}$, obtained as yellow crystals ($114.2 \mathrm{mg}, 9.5 \%$), m.p. $110-112^{\circ} \mathrm{C}$. Recrystallisation from ethyl acetate-light petroleum gave an analytically pure sample, m.p. $112-113{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.28(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 5.76(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH})$ and 7.06 $7.44(8 \mathrm{H}$, complex m, $8 \times \mathrm{ArH})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 222\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 2142$) and 309 (3938); m/z (\%) (EI) $209(\mathrm{M}+1,15)$, $208\left(\mathrm{M}^{+}, 86\right), 207(100), 192(42), 131$ (28) and $102(21)$ (Found: $\mathrm{C}, 80.7 ; \mathrm{H}, 5.65 ; \mathrm{N}, 13.5 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}$ requires $\mathrm{C}, 80.7 ; \mathrm{H}, 5.81 ; \mathrm{N}$, 13.4%). The second product was 4-cyano-2-methyl- N -phenylacetanilide 10 b ; isolated as a yellow gummy, solid (190 mg , 15%). The ${ }^{1} \mathrm{H}$ NMR spectrum gave only very broad signals; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 221 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3890\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 2215 and $1675 ; m / z(\%)(E I) 250\left(\mathrm{M}^{+}, 5\right), 208(90), 207(100)$ and 192 (18) (Found: C, $76.6 ; \mathrm{H}, 5.75 ; \mathrm{N}, 11.1 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 76.8 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.2 \%$). Unchanged acetanilide (509 mg) was also isolated from the column.
(b) Using copper(I) oxide. Acetanilide ($2.0 \mathrm{~g}, 14.81 \mathrm{mmol}$) and the nitrile $19(1.5 \mathrm{~g}, 7.65 \mathrm{mmol})$ were melted together in a dry nitrogen atmosphere. Copper(I) oxide $(2.3 \mathrm{~g})$ and potassium carbonate $(1.8 \mathrm{~g})$ were added and the mixture heated to 190 $200^{\circ} \mathrm{C}$ for 18 h . Work-up via ethyl acetate gave a brown gummy solid (3.23 g). Chromatography (ethyl acetate-light petroleum) ($30-70 \%$ ethyl acetate) gave three major components. (1) An orange solid (76 mg), identified as the starting nitrile 19 , (2) a yellow gum ($382 \mathrm{mg}, 20 \%$), identified as the acetanilide $\mathbf{1 0 b}$; all spectral data were identical to that described in the previous experiment, and (3) a cream powder (1.06 g), identified as starting acetanilide.

Hydrolysis of 4-cyano-2-methyl- N -phenylacetanilide 10b. The diphenylamide $\mathbf{1 0 b}(200 \mathrm{mg}, 0.8 \mathrm{mmol})$ was heated at reflux in ethanol $\left(6.5 \mathrm{~cm}^{3}\right)$ containing potassium hydroxide $(0.36 \mathrm{~g})$, for 1 h until no diphenylamide was visible by TLC. Normal work-up gave an orange-yellow solid ($163 \mathrm{mg}, 98 \%$), m.p. $108-112{ }^{\circ} \mathrm{C}$. This was chromatographed (ethyl acetate-light petroleum, 30:70) to give 4-cyano-2-methyl- N-phenylaniline $\mathbf{5 b}$ as yellow crystals ($116 \mathrm{mg}, 70 \%$), m.p. $112-113^{\circ} \mathrm{C}$. All spectra were the same as described earlier.

Coupling of 4-methoxyacetanilide with 4-bromo-3-methylbenzonitrile 19 using copper bronze. 4-Methoxyacetanilide (2 g , $12 \mathrm{mmol})$ and the benzonitrile $19(1.2 \mathrm{~g}, 6.12 \mathrm{mmol})$ were melted
together in a dry nitrogen atmosphere. Copper bronze (1.4 g) and potassium carbonate (1.2 g) were added to the melt and heated at $200^{\circ} \mathrm{C}$ for 22 h . Work-up with ethyl acetate gave a brown gum (2.62 g). Careful chromatography on silica and elution with $30-50 \%$ ethyl acetate in light petroleum gave four major fractions. First eluted was unchanged bromobenzonitrile $19(56 \mathrm{mg})$ as a yellow solid, followed by 4-cyano-N-(4'-methoxyphenyl)-2-methylaniline 5c ($131.5 \mathrm{mg}, 9 \%$), m.p. 121$124^{\circ} \mathrm{C}$, as a yellow crystalline solid. Recrystallisation from ethyl acetate-light petroleum yielded an analytically pure sample, m.p. $125-127^{\circ} \mathrm{C}$, as pale yellow crystals; $\delta_{\mathrm{H}} 2.27(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.82(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 6.92$ $\left(2 \mathrm{H}, \mathrm{d}, J 8,3^{\prime}\right.$ - and $\left.5^{\prime}-\mathrm{H}\right), 7.12\left(2 \mathrm{H}, \mathrm{d}, J 8,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.30(1 \mathrm{H}$, $\mathrm{d}, J 8,5-\mathrm{H})$ and $7.36(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 222 \mathrm{sh}$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 30130\right)$ and 303 (48400); $v_{\max } / \mathrm{cm}^{-1} 3370$, 2230 and $1600 ; m / z(\%)(E I) 238\left(\mathrm{M}^{+}, 80\right)$ and 224 (100) (Found $\mathrm{C}, 75.8 ; \mathrm{H}, 6.1 ; \mathrm{N}, 11.5 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 5.92 ; \mathrm{N}$, 11.8%).

Next eluted was a deep red gummy solid ($626.3 \mathrm{mg}, 36 \%$) identified as 4-cyano- N -(4'-methoxyphenyl)-2-methylacetanilide 10c. Attempts to crystallise the gum failed. It showed $\delta_{\mathrm{H}} 2.14$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 2.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NH} \mathrm{COMe}$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.84 $(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 6.90\left(2 \mathrm{H}, \mathrm{d}, J 8,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.16\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.44(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$ and $7.56(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$. Additional signals were observed at $\delta 3.76,2.28$ and 2.06. On heating the samples in $\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO at $75^{\circ} \mathrm{C}$ these signals reduced in intensity by $\approx 35 \%$, indicating that they arose from hindered rotation about the amide bond; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 232$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 61470\right)$ and $280 \mathrm{sh}(28570) ; v_{\text {max }} / \mathrm{cm}^{-1} 3300$, 2215 and $1650 ; m / z(\%)(E I) 280\left(\mathrm{M}^{+}, 7\right), 235(6), 223(100)$ and 205 (22) (Found: C, $72.7 ; \mathrm{H}, 5.8 ; \mathrm{N}, 9.75 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 5.75 ; \mathrm{N}, 9.99 \%$). The final fraction eluted was the unchanged acetanilide as cream crystals (922 mg).

Hydrolysis of 4-cyano-N-(4'-methoxyphenyl)-2-methylacetanilide 10c. The cyanodiphenylamide $10 \mathrm{c}(779 \mathrm{mg})$ was dissolved in ethanol ($35 \mathrm{~cm}^{3}$) containing potassium hydroxide $(1.8 \mathrm{~g})$ and heated to $60-70^{\circ} \mathrm{C}$ for 1 h when TLC showed no starting material. Normal work-up yielded yellow crystals identified as 4-cyano- N-(4'-methoxyphenyl)-2-methylaniline 5c ($565 \mathrm{mg}, 86 \%$), m.p. $121-125^{\circ} \mathrm{C}$. All spectra were identical to those reported earlier.

Coupling of 3,4,5-trimethoxyacetanilide with 4-bromo-3methylbenzonitrile 19 using copper(I) oxide. 3,4,5-Trimethoxyacetanilide ($1.87 \mathrm{~g}, 10 \mathrm{mmol}$) and 4-bromo-3-methylbenzonitrile ($1 \mathrm{~g}, 5.1 \mathrm{mmol}$) were melted together in a dry argon atmosphere. $\mathrm{Cu}_{2} \mathrm{O}(1.1 \mathrm{~g})$ and potassium carbonate $(1 \mathrm{~g})$ were added to the melt and heated to $190-200^{\circ} \mathrm{C}$ for 7.5 h . Work-up via ethyl acetate gave a brown solid (2.15 g) which on chromatography and elution with ethyl acetate ($30-70 \%$ in light petroleum) gave four components. The first [at $R_{f} 0.86$ (ethyl acetate-light petroleum, $1: 1$)] gave pale yellow crystals (34 mg) of the starting nitrile. The product at $R_{\mathrm{f}} 0.47$, obtained as yellow crystals ($73 \mathrm{mg}, 5 \%$), was identified as 4 -cyano- N -($3^{\prime}, 4^{\prime}, 5^{\prime}$ -trimethoxyphenyl)-2-methylaniline 5d. Recrystallisation of a small portion from ether-light petroleum gave an analytically pure sample, m.p. $145-147^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.28(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 3.84(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.65(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH}), 6.40(2 \mathrm{H}, \mathrm{s}$, 2^{\prime} - and $\left.6^{\prime}-\mathrm{H}\right), 7.06(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$ and $7.41(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 311\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 19 220); m/z (\%) (EI) 298 ($\mathrm{M}^{+}, 49$), 283 (100) and 255 (20) (Found: M^{+}, 298.1317. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 298.1317$). A product at $R_{\mathrm{f}} 0.26$ was isolated as an off-white solid (364 mg , 21%. Recrystallisation from ethyl acetate-light petroleum gave colourless crystals, of 4-cyano- $\mathrm{N}-\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right.$-trimethoxyphenyl)-2methylacetanilide 10d; m.p. $139-140^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.16(3 \mathrm{H}, \mathrm{s}$ br, 2$\mathrm{Me}), 2.34(3 \mathrm{H}, \mathrm{s}$ br, NCOMe), $3.82(9 \mathrm{H}, \mathrm{s}$ br, $3 \times \mathrm{OMe}), 6.40(2$ $\mathrm{H}, \mathrm{s}, 2^{\prime}-$ and $\left.6^{\prime}-\mathrm{H}\right), 7.22(1 \mathrm{H}, \mathrm{s} \mathrm{br}, 6-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d} \mathrm{br}, 5-\mathrm{H})$ and $7.60(1 \mathrm{H}, \mathrm{s}$ br, $3-\mathrm{H}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 219\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$

29 940) and 248 (16 390); $m / z(\%)$ (EI) $340\left(\mathrm{M}^{+}, 49\right), 298(15)$, 283 (100) and 157 (23) (Found: C, 67.0; H, 6.03; N, 8.31. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.05 ; \mathrm{H}, 5.92 ; \mathrm{N}, 8.23 \%$). Later fractions contained the starting anilide and mixtures of this and the diphenylamide 10 d .

Hydrolysis of 4-cyano- N -($3^{\prime}, 4^{\prime}, 5^{\prime}$-trimethoxyphenyl)-2methylacetanilide 10d. The diphenylamide 10 d ($300 \mathrm{mg}, 0.87$ mmol) in ethanol ($15 \mathrm{~cm}^{3}$) containing potassium hydroxide $(0.78 \mathrm{~g})$ was heated to $50-60^{\circ} \mathrm{C}$ for 1 h . Normal work-up gave an orange gum ($86 \mathrm{mg}, 99 \%$) which was chromatographed and elution with dichloromethane gave 4-cyano- N - $\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right.$-tri-methoxyphenyl)-2-methylaniline 5d (as pale yellow crystals ($216 \mathrm{mg}, 83 \%$). All spectroscopic data were the same as described earlier.

Coupling between 3,4-methylenedioxyacetanilide $8 \mathbf{e}$ and 4-bromo-3-methylbenzonitrile 19 using activated copper bronze. The anilide 8e ($1 \mathrm{~g}, 5.6 \mathrm{mmol}$) and benzonitrile $19(0.55 \mathrm{~g}, 2.8$ mmol) were melted together under a dry nitrogen atmosphere. Copper bronze (0.6 g) and potassium carbonate (0.5 g) were added and the mixture heated to $190-200^{\circ} \mathrm{C}$ for 12 h . Work-up with ethyl acetate gave a crude brown solid (1.3 g), which was submitted to flash chromatography. Elution with $10-30 \%$ of ethyl acetate-light petroleum gave five components. The first isolated, $R_{\mathrm{f}} 0.81$ was a yellow oil $(22.1 \mathrm{mg})$ identified as starting nitrile. The second was a yellow solid, identified as 4-cyano-N($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)-2-methylaniline $5 \mathrm{e}(5.3 \mathrm{mg},<1 \%$); m.p. $127-130^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.25(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 5.58(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH})$, $6.0\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.63\left(1 \mathrm{H}, \mathrm{d}, J 8,6^{\prime}-\mathrm{H}\right), 6.70(1 \mathrm{H}, \mathrm{d}, J 2$, $\left.2^{\prime}-\mathrm{H}\right), 6.81\left(1 \mathrm{H}, \mathrm{d}, J 8,5^{\prime}-\mathrm{H}\right), 6.88(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{d}$, $J 8,5-\mathrm{H})$ and $7.38(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 302\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 5741$); $m / z(\%)(E I) 252\left(\mathrm{M}^{+}, 100\right), 193(22)$ and 122 (9) (Found: $\mathrm{M}^{+}, 252.0899 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 252.0899$).

The next product was a brown solid (12.4 mg), m.p. 88-91 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{19}$ m.p. $94-95^{\circ} \mathrm{C}$) identified as 4-cyano-2-methylaniline; $\delta_{\mathrm{H}} 2.14(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 4.09\left(2 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{d}, J 8$, $6-\mathrm{H})$ and $7.30(2 \mathrm{H}, \mathrm{m}, 3-$ and $5-\mathrm{H}) ; m / z(\%)(\mathrm{EI}) 132\left(\mathrm{M}^{+}, 100\right)$, 131 (93), 104 (15) and 77 (14).

The main product isolated ($R_{\mathrm{f}} 0.15$) was a pale brown, gummy solid ($107.5 \mathrm{mg}, 13 \%$) identified as 4 -cyano- $\mathrm{N}-\left(3^{\prime}, 4^{\prime}\right.$ -methylenedioxyphenyl)-2-methylacetanilide $10 \mathbf{e} ; \delta_{\mathrm{H}} 2.14(3 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{Me}), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{NCOMe}), 6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.70(1 \mathrm{H}$, d, $\left.J 8,6^{\prime}-\mathrm{H}\right), 6.72\left(1 \mathrm{H}, \mathrm{d}, J 2,2^{\prime}-\mathrm{H}\right), 6.80\left(1 \mathrm{H}, \mathrm{d}, J 8,5^{\prime}-\mathrm{H}\right), 7.18$ $(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$ and $7.56(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$. A further set of signals of lower intensity were observed at δ $1.92,2.24,5.90,6.54,7.39$ and 7.60 . These were unchanged on heating the sample in $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$ at $100{ }^{\circ} \mathrm{C}$ and were assigned to a rotamer of the main product; $m / z(\%)(E I) 294\left(\mathrm{M}^{+}, 41\right), 252$ (100), 193 (15) and 157 (12) (Found: $\mathrm{M}^{+}, 294.1004 . \mathrm{C}_{17} \mathrm{H}_{14}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{3}$ requires $M, 294.1004$). The final component isolated was the starting anilide 8 e (355 mg).

Hydrolysis of 4-cyano- N -($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)-2methylacetanilide 10e. The diphenylamide 10e (131 mg, 0.45 mmol) in ethanol $\left(6 \mathrm{~cm}^{3}\right)$ containing potassium hydroxide (0.34 g) was warmed to $55-60^{\circ} \mathrm{C}$ for 2 h . Normal work-up yielded the diphenylamine 5 e as a pale yellow crystalline solid $(92.4 \mathrm{mg}$, 82%), m.p. $128-130^{\circ} \mathrm{C}$. All spectra were the same as previously reported.

Preparation of 3-cyano-1-methylcarbazole 6a. The diphenylamine 5 b ($97.6 \mathrm{mg}, 0.47 \mathrm{mmol}$) was refluxed in trifluoroacetic acid (TFA) $\left(6 \mathrm{~cm}^{3}\right)$ containing palladium(iI) acetate $(117.3 \mathrm{mg}$, 0.94 mmol) under a nitrogen atmosphere for 2 h . After cooling, the TFA was removed under reduced pressure. The palladium residues were extracted with dichloromethane ($5 \times 10 \mathrm{~cm}^{3}$) and filtered. The combined organic filtrates were washed with water ($40 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent yielded a dark yellow solid (50 mg), which was chromatographed. Elution with ethyl acetate ($10-40 \%$ in light petroleum) gave the title carbazole 6 a as a white powder ($29.4 \mathrm{mg}, 30 \%$),
m.p. $195-196^{\circ} \mathrm{C}$ (lit., ${ }^{18}$ m.p. $193^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone) 2.64 (3 $\mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 7.28(1 \mathrm{H}, \mathrm{t}, J 8,6-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{t}, J 8,7-\mathrm{H}), 7.54(1$ $\mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 8.24(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 8.42(1 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{H})$ and $10.85(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH}) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 233\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 8725$), 242 (8720), 257sh (9850), 272 (12930), 322 (1130) and 336 (775); $m / z(\%)$ (EI) $207(M+1,35), 206\left(M^{+}\right.$, 100), 191 (7), 177 (31), 165 (9) and 103 (67).

3-Cyano-6-methoxy-1-methylcarbazole 6b. The cyanodiphenylamine $5 \mathrm{c}(110 \mathrm{mg}, 0.46 \mathrm{mmol})$ and palladium(II) acetate $(212 \mathrm{mg}, 0.94 \mathrm{mmol})$ were refluxed in TFA ($6 \mathrm{~cm}^{3}$) under nitrogen for 2.25 h . The crude product was obtained as above as an orange solid (75 mg). The solid was chromatographed on silica and elution with dichloromethane gave the title carbazole 6b as a white powder ($54.8 \mathrm{mg}, 50 \%$); m.p. $188-190^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3370(\mathrm{NH}), 2230(\mathrm{CN})$ and $1610(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) $2.56(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.12(1 \mathrm{H}, \mathrm{dd}$, $J 8,3,7-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.82(1 \mathrm{H}$, $\mathrm{d}, J 3,5-\mathrm{H}), 8.52(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ and $11.65(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 222\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 18310\right) 263 \mathrm{sh}(12880)$, 282 (21460) and 296sh (13 870); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3370,2230$ and 1610; $m / z(\%)(E I) 237(M+1,7), 236\left(\mathrm{M}^{+}, 22\right), 221(100)$, 193 (76) and 164 (34) (Found: $\mathrm{M}^{+}, 236.0950 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $M, 236.0950$).

3-Formyl-6-methoxy-1-methylcarbazole 30a. The DIBAL was calibrated immediately prior to use by means of gas titration.

The cyanocarbazole $6 \mathrm{~b}(104.4 \mathrm{mg}, 0.44 \mathrm{mmol})$ was suspended in diglyme $\left(5.5 \mathrm{~cm}^{3}\right)$ under a dry nitrogen atmosphere and cooled to $-78^{\circ} \mathrm{C}$ (bath temperature). DIBAL (1.3 $\mathrm{cm}^{3}, 1.3$ mmol) was slowly added to the stirring mixture and after 15 min at $-78{ }^{\circ} \mathrm{C}$ the cooling bath was removed and the reaction allowed to warm to room temperature for 2 h . The reaction mixture was cooled in an ice bath and $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid ($12 \mathrm{~cm}^{3}$) was carefully added. The ice bath was removed and the mixture stirred for a further 90 min at room temperature before being treated with water ($25 \mathrm{~cm}^{3}$) and extracted with chloroform $\left(6 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent removal yielded the crude carbazole 30 a as a yellow-orange solid ($50 \mathrm{mg}, 48 \%$). Chromatography, eluting with ether-light petroleum ($75: 25$) gave the pure 3-formylcarbazole $\mathbf{3 0 a}$ as a pale cream powder ($38 \mathrm{mg}, 36 \%$), m.p. $202-203{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19}$ m.p. $\left.191-192{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone $) 2.63(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 3.92(3 \mathrm{H}, \mathrm{s}$, OMe), $7.11(1 \mathrm{H}, \mathrm{dd}, J 7,7-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{d}, J 7,8-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 8.53(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 10.04(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO})$ and $10.66(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 230\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 6655\right) 248$ (5700), 280 (6625), 298 (7410) and 335 (2104); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3325,1679$ and $1595 ; \mathrm{m} / z$ (\%) (EI) 239 $\left(\mathrm{M}^{+}, 100\right), 224$ (100), 196 (22) and 167 (10) (Found: \mathbf{M}^{+}, 239.0946. Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}: M, 239.0946$).

3-Cyano-5,6,7-trimethoxy-1-methylcarbazole 6c. The diphenylamine 5 d ($110 \mathrm{mg}, 0.37 \mathrm{mmol}$) and palladium(II) acetate $(160 \mathrm{mg}, 0.71 \mathrm{mmol})$ were heated to reflux in acetic acid $\left(6 \mathrm{~cm}^{3}\right)$ for 1 h in an argon atmosphere. The reaction was cooled and work-up as before left an orange solid (82.5 mg) which was chromatographed eluting with dichloromethane to give the title carbazole 6 c as a white powder $\left(62.5 \mathrm{mg}, 57 \%\right.$), m.p. $193-196^{\circ} \mathrm{C}$. Rechromatography of a portion of the material gave an analytically pure sample, m.p. 202-203 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.54(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$, 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.75 $(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{s} \mathrm{br}, \mathrm{NH})$ and 8.34 (1 H, s, 4-H); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 238\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 15 800), 252 (18950), 275 (20640) and 318 (4500); $m / z(\%)$ (EI) $297\left(\mathrm{M}^{+}+1,19\right), 296\left(\mathrm{M}^{+}, 81\right), 281(100), 238(49)$ and 223 (81) (Found: $\mathrm{M}^{+}, 296.1161 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 296.1161$).

3-Formyl-5,6,7-trimethoxy-1-methylcarbazole 30b. The DIBAL was calibrated by means of gas titration immediately prior to use.

The cyanocarbazole $6 \mathrm{c}(26 \mathrm{mg}, 0.0878 \mathrm{mmol})$ was suspended
in diglyme $\left(1 \mathrm{~cm}^{3}\right)$ under a dry nitrogen atmosphere and cooled to $-78^{\circ} \mathrm{C}$ (bath temperature). DIBAL ($0.25 \mathrm{~cm}^{3}, 0.25 \mathrm{mmol}$) was slowly added to the stirring mixture and after 15 min the cooling bath was removed. The resulting yellow solution was stirred at room temperature for 2 h . The reaction was cooled in an ice bath and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid ($2.5 \mathrm{~cm}^{3}$) was carefully added. The ice bath was removed and the reaction stirred at room temperature for a further 90 min, after which water ($5 \mathrm{~cm}^{3}$) was added and the aqueous mixture worked up via chloroform to give the crude formylcarbazole 30 b as a yellow solid ($18 \mathrm{mg}, 69 \%$). Chromatography (ether-light petroleum, 80:20) gave the 3-formylcarbazole 30b, m.p. $185-187^{\circ} \mathrm{C}$; δ_{H} 2.58 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.20 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.80(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{s} \mathrm{br}$, $\mathrm{NH}), 8.50(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ and $10.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \lambda_{\text {max }}(\mathrm{MeOH}) /$ $\mathrm{nm} 214\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3045\right), 241$ (4890), 282 (5515), 293sh (4240) and 329 (1600); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3340,1678$ and $1594 ; m / z(\%)(E I) 299\left(\mathrm{M}^{+}, 100\right), 284$ (95), 256 (20), 241 (25), 226 (38) and 149 (30) (Found: $\mathrm{M}^{+}, 299.1158 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $M, 299.1157$).

Oxidation of 4-cyano- N -($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)-2methylaniline 5e. The diphenylamine $5 \mathrm{e}(118.4 \mathrm{mg}, 0.4 \mathrm{mmol})$ was dissolved in acetic acid ($18 \mathrm{~cm}^{3}$) under nitrogen. Palladium(II) acetate ($212.5 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added and the mixture heated at reflux for 45 min . After removal of solvent the remaining black solid was thoroughly extracted with boiling dichloromethane ($7 \times 10 \mathrm{~cm}^{3}$). The combined organic extracts were washed with dilute aqueous sodium hydrogen carbonate $\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent evaporation yielded a yellow solid (72.4 mg) which was chromatographed with dichloromethane to give an inseparable mixture of 3-cyano-6,7-(methylenedioxy)-1-methylcarbazole 33 and 3-cyano-5,6-methylenedioxy-1-methylcarbazole 34 in the ratio of $6: 1$ in favour of the 6,7 -isomer, as a fine white powder ($45 \mathrm{mg}, 45 \%$), m.p. $275-277^{\circ} \mathrm{C}$; $\lambda_{\text {max }} / \mathrm{nm} 348\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 1850$), 284 (11900), 251 (8170) and 225 (6900).

The ${ }^{1} \mathrm{H}$ NMR signals of the 6,7 -isomer were as follows; $\delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone $) 10.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N}-\mathrm{H}), 8.28(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.65$ $(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 6.08(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right)$ and $2.59(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$; the signals due to the 5,6 -isomer of greatly reduced intensity were at $\delta 8.14(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.54(1 \mathrm{H}$, m, 2-H), 7.13 (1 H, d, J 7, Ar-H), 7.04 (1 H, d, J 7, Ar-H), 6.22 (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $2.62(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$. The mixture gave $m / z(\%) 250$ $\left(\mathrm{M}^{+}, 100\right), 192$ (13) and 125 (18) (Found: $\mathrm{M}^{+}, 250.0742$. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 250.0742$).

Oxidation of the cyano diphenylamine $5 \mathrm{5a}$ by palladium(II) acetate. The cyano diphenylamine $5 \mathrm{a}(500 \mathrm{mg}, 1.8 \mathrm{mmol})$ and palladium(II) acetate $(825.1 \mathrm{mg}, 3.7 \mathrm{mmol})$ were refluxed for 1 h in glacial acetic acid $\left(120 \mathrm{~cm}^{3}\right)$ under an atmosphere of nitrogen. The mixture was allowed to cool before the acetic acid was removed under reduced pressure. The black residues were extracted with chloroform ($2 \times 100 \mathrm{~cm}^{3}$) and gave the crude product as an orange solid ($440.3 \mathrm{mg}, 89 \%$). Chromatography, and elution with dichloromethane gave 3-cyano-5,7-dimethoxy-1-methylcarbazole $6 \mathbf{d}$ as an amorphous yellow powder (268.9 $\mathrm{mg}, 55 \%$); m.p. $269-270{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.56\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{CH}_{3}\right), 3.96(3 \mathrm{H}$, $\left.\mathrm{s}, 7-\mathrm{OCH}_{3}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{OCH}_{3}\right), 6.36(1 \mathrm{H}, \mathrm{d}, J 2,6-\mathrm{H}), 6.59$ $(1 \mathrm{H}, \mathrm{d}, J 2,8-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.19(1 \mathrm{H}, \mathrm{s}$ br, NH) and 8.36 (1 H, s, 4-H); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 220\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 5440), 232 (48900), 270 (8560), 288sh (5000), 315 (1600) and 328 (1220); $v_{\text {max }} / \mathrm{cm}^{-1} 3340,2220$ and $1600 ; m / z(\%)$ (EI) 267 (100, $\mathbf{M}+1$), 252 (10), 24 (40) and 208 (28) (Found: $\mathbf{M}^{+}, 267.1088$. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 267.1133$).

Acknowledgements

We thank the Wellcome Research Laboratories, Beckenham, Kent for a CASE Award (to R. J. H.); the SERC for a Quota

Award (to J. M.), the Instituto Nacional de Investigação Científica, Portugal for support (to M. J. R. P. Q.) and the British Council for support under the Treaty of Windsor Programme.

References

1 M. J. E. Hewlins, A. H. Jackson, A. M. Oliveira-Campos and P. V. R. Shannon, J. Chem. Soc., Perkin Trans. 1, 1981, 2906
2 R. J. Hall, A. H. Jackson, A. M. F. Oliveira-Campos and P. V. R. Shannon, J. Chem. Res., 1990, (S) 314, (M), 2501.
3 R. J. Hall, A. M. F. Oliveira-Campos, M. J. R. P. Queiroz and P. V. R. Shannon, J. Chem. Res., 1992, (S), 2, (M), 0114.
4 (a) M. Sainsbury, Synthesis, 1977, 7, 437; (b) M. J. E. Hewlins, A. M. Oliveira-Campos and P. V. R. Shannon, Synthesis, 1984, 4, 289.
5 (a) K. H. Grellmann, G. M. Sherman and H. Linschitz, J. Am. Chem. Soc., 1963, 85, 1881; (b) W. Carruthers, J. Chem. Soc., Chem. Commun., 1966, 272; (c) V. M. Clark, A. Cox and E. J. Herbert, J. Chem. Soc. C, 1968, 831; (d) J. Joule, Adv. Heterocycl. Chem., 1984, 35, 83.
6 (a) I. Goldberg, Ber., 1906, 39, 1691; (b) P. E. Weston and H. Adkins, J. Am. Chem. Soc., 1928, 50, 859; (c) M. J. E. Hewlins, A. H. Jackson, A. Long, A. M. Oliveira-Campos and P. V. R. Shannon, J. Chem. Res., 1986, (S) 292, (M) 2645.
7 A. M. F. Oliveira-Campos and P. V. R. Shannon, unpublished results.
8 E. H. Gold and E. Babad, J. Org. Chem., 1972, 37, 2208.
9 A. H. Jackson, P. R. Jenkins and P. V. R. Shannon, J. Chem. Soc., Perkin Trans. 1, 1977, 1698.
10 L. K. Dalton, S. Demerac, B. C. Elmes, J. W. Loder, J. M. Swan and T. Teitei, Aust. J. Chem., 1967, 20, 2715.

11 J. Y. Lallemand, P. Lemaitre, L. Beeley, P. Lesca and D. Mansuy, Tetrahedron Lett., 1978, 1261.

12 R. W. Guthrie, A. Brossi, F. A. Mennona, J. G. Mullin, R. W. Kierstead and E. Grunberg, J. Med. Chem., 1975, 18, 755.
13 (a) C. Pomeranz, Monatsch., 1893, 14, 116; (b) A. J. Birch, A. H. Jackson and P. V. R. Shannon, J. Chem. Soc., Perkin Trans. 1, 1974, 2185.
14 B. Akermark, L. Eberson, E. Jonsson and E. Pettersson, J. Org. Chem., 1975, 40, 1365.
15 (a) R. Adams and H. M. Teeter, J. Am. Chem. Soc., 1940, 62, 2188; (b) T. Tanouchi, M. Kawamura, I. Ohyama, I. Kajiwara, Y. Iguchi, T. Okada, T. Miyamoto, K. Taniguchi, M. Hayashi, K. Iizuka and M. Nakazawa, J. Med. Chem., 1981, 1149.

16 G. Bartoli, M. Bosco, R. Dal-Pozzo and M. Petrini, Tetrahedron, 1987, 43, 4221
17 E. W. Crandall, R. Beasley, L. L. Lambing and R. Moriconi, J. Org. Chem., 1967, 32, 134
18 (a) I. Hogan, P. D. Jenkins and M. Sainsbury, Tetrahedron, 1990, 46, 2943; (b) I. Hogan, P. Jenkins and M. Sainsbury, Tetrahedron Lett., 1988, 49, 6505.
19 J. Gilbert, D. Rousselle, C. Gansser and C. Viel, J. Heterocycl. Chem., 1979, 16, 7.
20 D. Rousselle, J. Gilbert and C. Viel, C.R. Hebd. Seances Acad. Sci., 1977, 284, 377.
21 S. Veeraraghavan and F. D. Popp, Synthesis, 1980, 384.
22 P. A. Cranwell and J. E. Saxton, J. Chem. Soc., 1962, 3482
23 L. K. Dalton, S. Demerac and T. Teitei, Aust. J. Chem., 1969, 22, 185.

24 R. A. Benkeser, R. A. Hickner, D. I. Hoke and O. H. Thomas, J. Am. Chem. Soc., 1958, 80, 5289.

Paper 2/03965F
Received 24th July 1992
Accepted 2nd September 1992

